FAIRCHILD

SEMICONDUCTOR

74VHC164 8-Bit Serial-In, Parallel-Out Shift Register

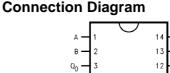
General Description

The VHC164 is an advanced high-speed CMOS device fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The VHC164 is a high-speed 8-Bit Serial-In/Parallel-Out Shift Register. Serial data is entered through a 2input AND gate synchronous with the LOW-to-HIGH transition of the clock. The device features an asynchronous Master Reset which clears the register, setting all outputs LOW independent of the clock. An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

August 1993

Revised April 1999

Features


- High Speed: f_{MAX} = 175 MHz at V_{CC} = 5V
- \blacksquare Low power dissipation: I_{CC} = 4 μA (max) at T_A = 25°C
- $\blacksquare High noise immunity: V_{NIH} = V_{NIL} = 28\% V_{CC} (min)$
- Power down protection provided on all inputs
- Low noise: V_{OLP} = 0.8V (max)
- Pin and function compatible with 74HC164

Ordering Code:

Order Number	Package Number	Package Description	
74VHC164M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow	-
74VHC164SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide	-
74VHC164MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	
74VHC164N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide	-
Surface mount package	es are also available on T	ape and Reel. Specify by appending the suffix letter "X" to the ordering code.	-

Logic Symbol

0,

Q.2

Q₃

GND

Vcc

0-

Qe

0-

Q₄

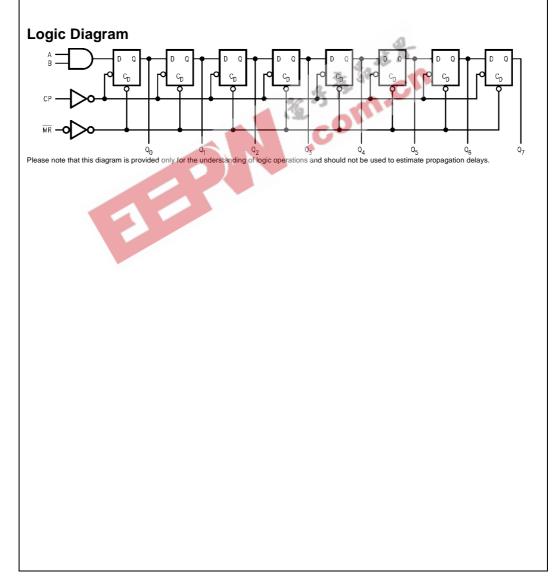
MR

Pin Descriptions

Pin Names	Description
А, В	Data Inputs
СР	Clock Pulse Input (Active Rising Edge)
MR	Master Reset Input (Active LOW)
Q ₀ -Q ₇	Outputs

Functional Description

The VHC164 is an edge-triggered 8-bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B); either of these inputs can be used as an active High Enable for data entry through the other input. An unused input must be tied HIGH.


Each LOW-to-HIGH transition on the Clock (CP) input shifts data one place to the right and enters into Q_0 the logical AND of the two data inputs (A • B) that existed before the rising clock edge. A LOW level on the Master Reset $(\overline{\text{MR}})$ input overrides all other inputs and clears the register asynchronously, forcing all Q outputs LOW.

Function Table

Operating	I	Inputs			Outputs		
Mode	MR	Α	в	Q ₀	Q ₁ –Q ₇		
Reset (Clear)	L	Х	Х	L	L–L		
Shift	Н	L	L	L	Q ₀ –Q ₆		
	н	L	н	L	Q ₀ –Q ₆ Q ₀ –Q ₆		
	н	н	L	L	Q ₀ Q ₆		
	н	н	н	н	$Q_0 - Q_6$		

H = HIGH Voltage Levels L = LOW Voltage Levels

Q = Lowr case letters indicate the state of the referenced input or outputone setup time prior to the LOW-to-HIGH clock transition.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _{IN})	-0.5V to + 7.0V
DC Output Voltage (V _{OUT})	$-0.5V$ to $V_{CC} + 0.5V$
DC Diode Current (I _{IK})	–20 mA
Output Diode Current (I _{OK})	±20 mA
DC Output Current (I _{OUT})	±25 mA
DC V _{CC} /GND Current (I _{CC})	±75 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 5.5V
Input Voltage (V _{IN})	0V to +5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _{OPR})	-40°C to +85°C
Input Rise and Fall Time (t_r, t_f)	
$V_{CC}=3.3V\pm0.3V$	0 ns/V ~ 100 ns/V
$V_{CC}=5.0V\pm0.5V$	0 ns/V ~ 20 ns/V
Note 1: Absolute maximum ratings are those v	alues beyond which damage

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = 25°C			T _A = -40°	C to +85°C	Units	Conditions	
0,		(V)	Min	Тур	Max	Min	Max	G into	Conditions	
V _{IH}	HIGH Level Input	2.0	1.50			1.50	15	V		
	Voltage	3.0-5.5	0.7 V _{CC}			0.7 V _{CC}	- 1			
VIL	LOW Level Input	2.0			0.50	2	0.50	v	Ì	
	Voltage	3.0 - 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level Output	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH}$	$I_{OH} = -50 \ \mu A$
	Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}	
		4.5	4.4	4.5		4.4				
		3.0	2.58			2.48		V		$I_{OH} = -4 \text{ mA}$
		4.5	3.94		· ·	3.80		v		$I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level Output	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH}$	$I_{OL} = 50 \ \mu A$
	Voltage	3.0		0.0	0.1		0.1	V	or V _{IL}	
		4.5		0.0	0.1		0.1			
		3.0			0.36		0.44	V		$I_{OL} = 4 \text{ mA}$
		4.5			0.36		0.44	v		$I_{OL} = 8 \text{ mA}$
I _{IN}	Input Leakage	0 - 5.5			±0.1		±1.0	A	V _{IN} = 5.5V o	r GND
	Current							μA		
I _{CC}	Quiescent Supply	5.5			4.0		40.0	۸	$V_{IN} = V_{CC}$ or	GND
	Current							μA		

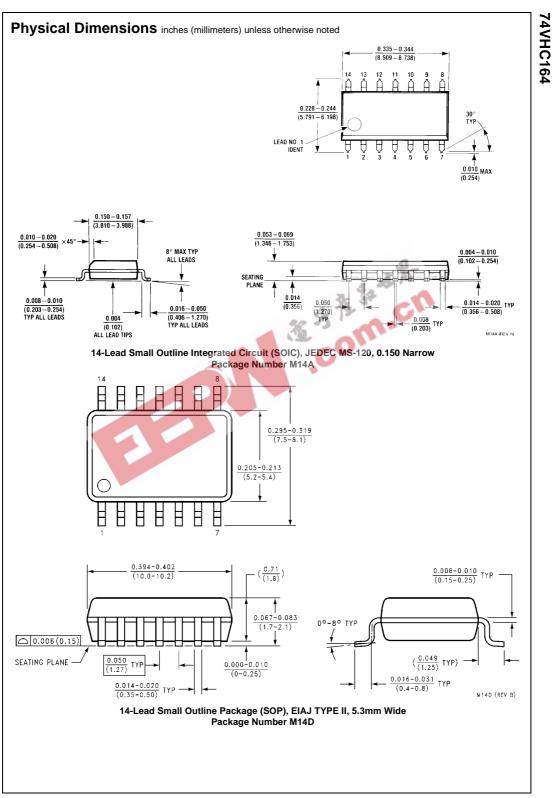
N

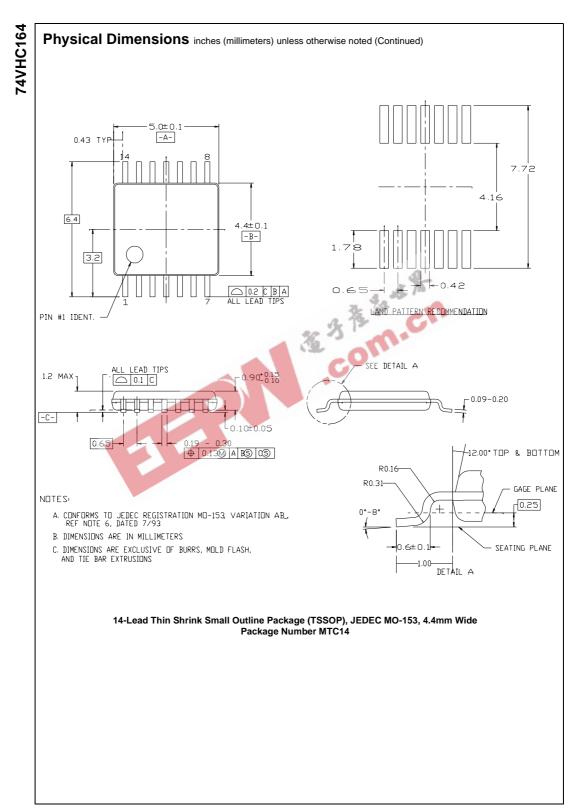
Noise Characteristics

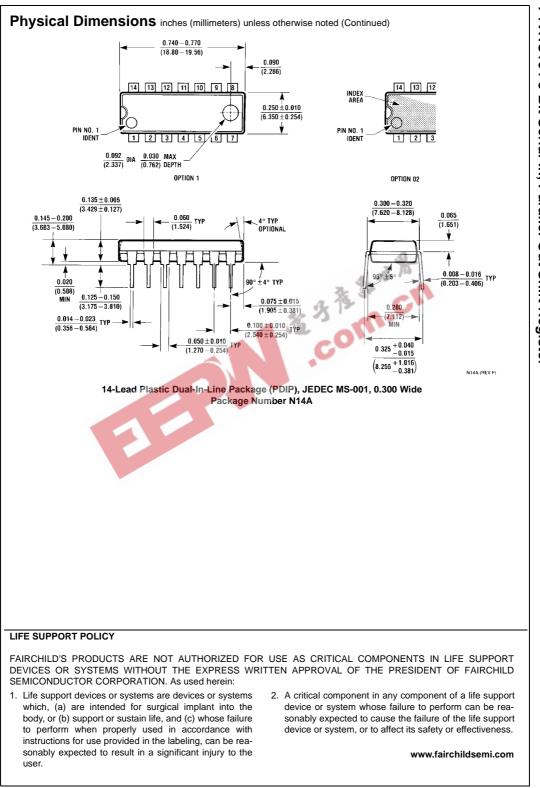
Symbol	Parameter	V _{cc}	T _A =	25°C	Units	Conditions	
	i arameter	(V)	Тур	Limits	Units	Conditions	
V _{OLP}	Quiet Output Maximum	5.0	0.5	0.8	V	C _L = 50 pF	
(Note 3)	Dynamic V _{OL}						
V _{OLV}	Quiet Output Minimum	5.0	-0.5	0.8	V	C _L = 50 pF	
(Note 3)	Dynamic V _{OL}						
V _{IHD}	Minimum HIGH Level	5.0		3.5	V	C _L = 50 pF	
(Note 3)	Dynamic Input Voltage						
V _{ILD}	Maximum LOW Level	5.0		1.5	V	C _L = 50 pF	
(Note 3)	Dynamic Input Voltage						

Note 3: Parameter guaranteed by design.

74VHC164


AC Electrical Characteristics


Symbol	Parameter	V _{cc}	T _A = 25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions
Cymbol		(V)	Min	Тур	Max	Min	Max	onita	Conditions
f _{MAX}	Maximum Clock Frequency	3.3 ± 0.3	80	125		65		MHz	$C_L = 15 \text{ pF}$
			50	75		45		IVIFIZ	$C_L = 50 \text{ pF}$
		5.0 ± 0.5	125	175		105		MHz	C _L = 15 pF
			85	115		75		IVIFIZ	$C_L = 50 \text{ pF}$
t _{PLH}	Propagation Delay	3.3 ± 0.3		8.4	12.8	1.0	15.0	ns	$C_L = 15 \text{ pF}$
t _{PHL}	Time (CP–Q _n)			10.9	16.3	1.0	18.5	115	$C_L = 50 \text{ pF}$
		5.0 ± 0.5		5.8	9.0	1.0	10.5	ns	$C_L = 15 \text{ pF}$
				7.3	11.0	1.0	12.5	115	$C_L = 50 \text{ pF}$
^t PLH	Propagation Delay	3.3 ± 0.3		8.3	12.8	1.0	15.0		C _L = 15 pF
^t PHL	Time (MR–Q _n)			10.8	16.3	1.0	18.5	ns	$C_L = 50 \text{ pF}$
		5.0 ± 0.5		5.2	8.6	1.0	10.0		$C_L = 15 \text{ pF}$
				6.7	10.6	1.0	12.0	ns	$C_L = 50 \text{ pF}$
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Open
C _{PD}	Power Dissipation			76			-	pF	(Note 4)
	Capacitance								


Note 4: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consoperating current can be obtained from the equation: I_{CC} (opr.) = C_{PD} * V_{CC} * f_{IN} + I_{CC}. AC Operating Requirements

		V _{CC}	Τ _Α =	25°C	$T_{\Delta} = -40^{\circ}C$ to $+85^{\circ}C$	
Symbol	Parameter	(V) (Note 5)	Тур		teed Minimum	Units
t _W (L)	Minimum Pulse Width (CP)	3.3 🧳		5.0	5.0	ns
t _W (H)		5.0		5.0	5.0	115
t _W (L)	Minimum Pulse Width (MR)	3.3		5.0	5.0	
		5.0		5.0	5.0	ns
t _S	Minimum Setup Time	3.3		5.0	6.0	
		5.0		4.5	4.5	ns
t _H	Minimum Hold Time	3.3		0.0	0.0	ns
		5.0		1.0	1.0	115
t _{REC}	Minimum Removal Time (MR)	3.3		2.5	2.5	
		5.0		2.5	2.5	ns

Note 5: V_{CC} is 3.3 ± 0.3 V or 5.0 ± 0.5 V

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.