

October 1994 Revised August 1999

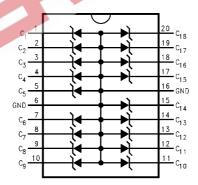
74F1071

18-Bit Undershoot/Overshoot Clamp and ESD Protection Device

General Description

The 74F1071 is an 18-bit undershoot/overshoot clamp which is designed to limit bus voltages and also to protect more sensitive devices from electrical overstress due to electrostatic discharge (ESD). The inputs of the device aggressively clamp voltage excursions nominally at 0.5V below and 7V above ground.

Features


- 18-bit array structure in 20-pin package
- FAST® Bipolar voltage clamping action
- Dual center pin grounds for min inductance
- Robust design for ESD protection
- Low input capacitance
- Optimum voltage clamping for 5V CMOS/TTL applications

Ordering Code:

Order Number	Package Number	Package Description					
74F1071SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide					
74F1071MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide					
74F1071MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide					

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Note: Simplified Component Representation

FAST® is a registered trademark of Fairchild Semiconductor Corporation.

Absolute Maximum Ratings(Note 1)

-65°C to +150°C Storage Temperature Ambient Temperature under Bias -65°C to +125°C Junction Temperature under Bias -65°C to +150°C Input Voltage (Note 2) -0.5V to +6V

Input Current (Note 2) -200 mA to +50 mA

ESD (Note 3) Human Body Model

(MIL-STD-883D method 3015.7) ±10 kV

IEC 801-2 ±6 kV Machine Model (EIAJIC-121-1981) ±2 kV

DC Latchup Source Current

(JEDEC Method 17) ±500 mA

Package Power Dissipation @+70°C

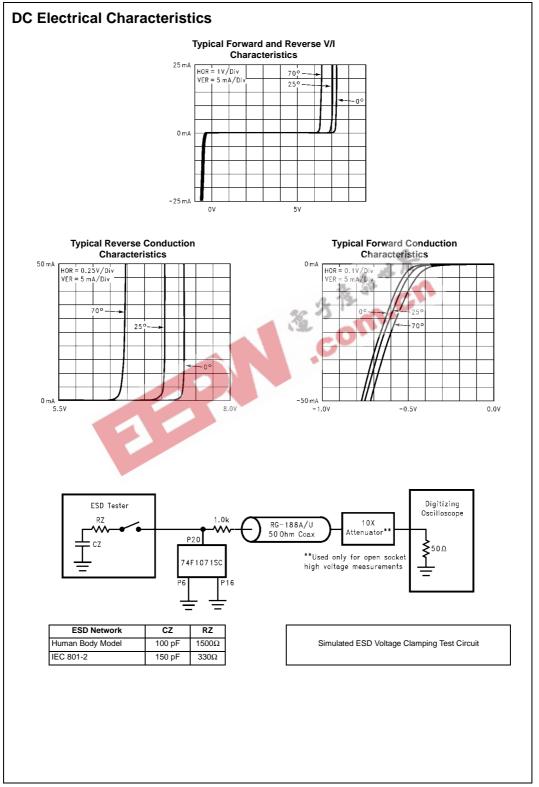
SOIC Package 800 mW

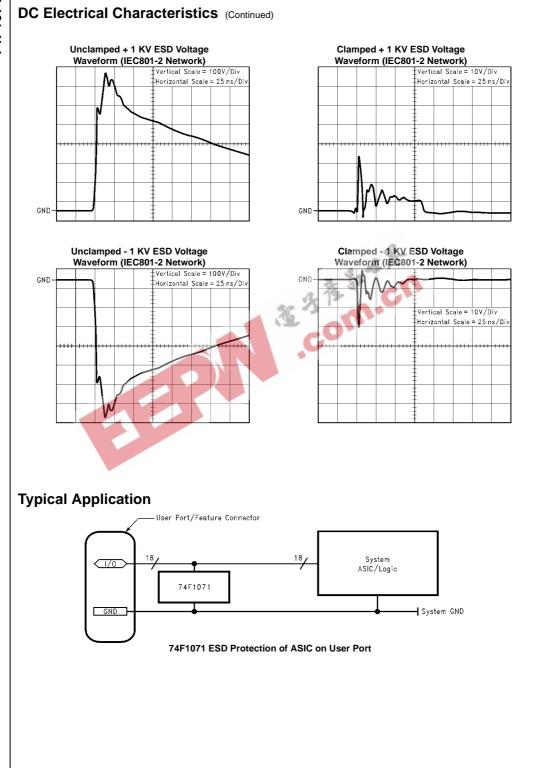
Recommended Operating Conditions

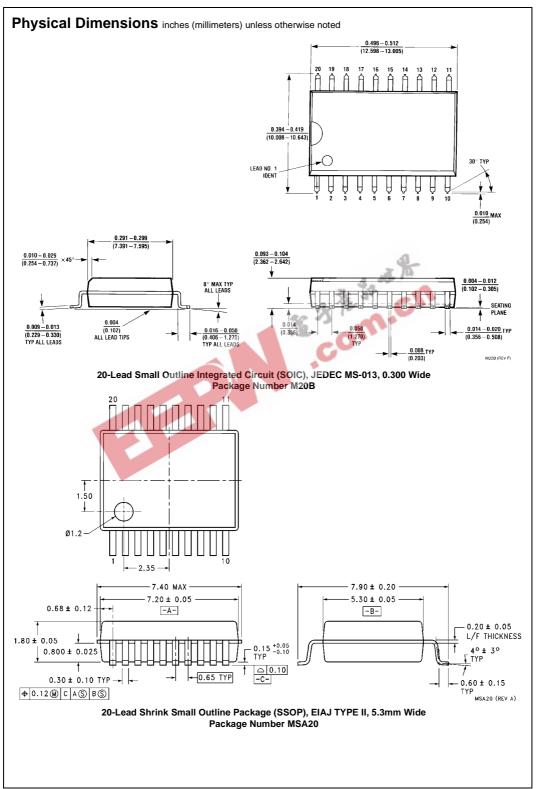
Free Air Ambient Temperature 0°C to $+70^{\circ}\text{C}$ Reverse Bias Voltage 0V to 5.25 V_{DC}

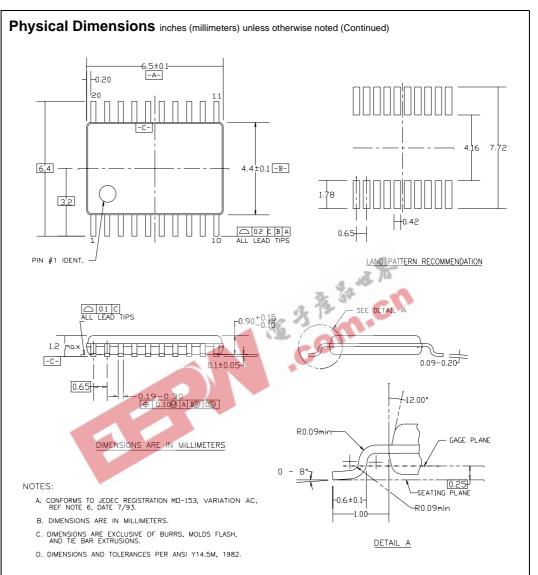
Thermal Resistance (θ_{JA} in Free Air)

100°C/W SOIC Package SSOP Package 110°C/W


Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. Functional operation


Note 2: Voltage ratings may be exceeded if current ratings and junction temperature and power consumption ratings are not exceeded.


Note 3: ESD Rating for Direct contact discharge using ESD Simulation Tester. Higher rating may be realized in the actual application.


DC Electrical Characteristics

Symbol	Parameter	T _A = +25°C			$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$		Units	Conditions	
	i arameter	Min	Тур	Max	Min	Max	Onlas	Conditions	
I _{IH}	Input HIGH Current		1.5	10	8 3	50	μА	V _{IN} = 5.25V; Untested Input @ GND	
			3	20	36	100	μΑ	V _{IN} = 5.5V; Untested Input @ GND	
Vz	Reverse Voltage	6.6	6.9	7.2	5.9	7 .7	V	I _Z = 1 mA; Untested Inputs @ GND	
			7.1	7.5		8.0	V	I _Z = 50 mA; Untested Inputs @ GND	
V _F	Forward Voltage	-0.3	-0.6	-0.9	-0.3	-0.9	V	I _F = -18 mA; Untested Inputs @ 5V	
		-0.5	-1.1	-1.5	-0.5	-1.5	V	I _F = -200 mA; Untested Inputs @ 5V	
I _{CT}	Adjacent Input Crosstalk			3			%		
C _{IN}	Input Capacitance		25				pF	$V_{BIAS} = 0 V_{DC}$ $V_{BIAS} = 5 V_{DC}$	
	(small signal @ 1 MHz)		13				ы	$V_{BIAS} = 5 V_{DC}$	

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com