

Absolute Maximum Ratings(Note 2)

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +7.0		V	
VI	DC Input Voltage	-0.5 to +7.0		V	
Vo	DC Output Voltage	-0.5 to +7.0	Output in HIGH or LOW State (Note 3)	V	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA	
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA	
		+50	$V_{O} > V_{CC}$	mA	
I _O	DC Output Sink Current	50		mA	
I _{CC}	DC Supply Current per Supply Pin	±100		mA	
I _{GND}	DC Ground Current per Ground Pin	±100		mA	
T _{STG}	Storage Temperature	-65 to +150		°C	

Recommended Operating Conditions (Note 4)

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	v
/ ₁	Input Voltage		0	5.5	V
V _O	Output Voltage	. %	0	5.5	V
OL	Output Current	$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		24	
		$V_{CC} = 2.7V - 3.0V$	a la	12	mA
		$V_{CC} = 2.3V - 2.7V$		8	
Γ _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V-2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation. Note 3: I_O Absolute Maximum Rating must be observed. Note 4: Unused inputs or I/Os must be held HIGH or LOW. They may not float.

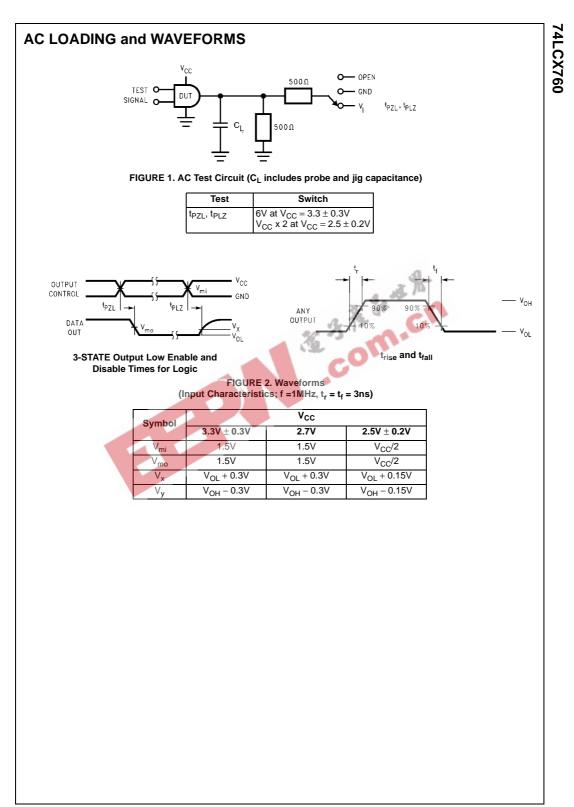
DC Electrical Characteristics

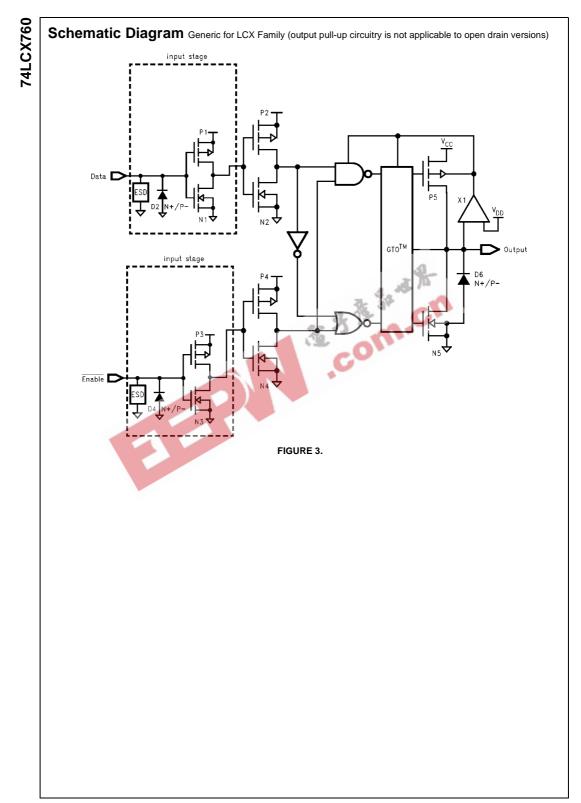
Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Symbol	Farameter	Conditions	(V)	Min	Max	Onite
VIH HIGH Level Input Voltage	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 - 3.6	2.0		v
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 - 3.6		0.8	v
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 8 mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
I _I	Input Leakage Current	$0 \le V_1 \le 5.5V$	2.3 - 3.6		±5.0	μA
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.3 - 3.6		±5.0	μA
		$V_I = V_{IH}$ or V_{IL}	2.5 - 3.0		10.0	μΛ
I _{OFF}	Power-Off Leakage Current	$V_{I} \text{ or } V_{O} = 5.5 V$	0		10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 3.6		10	μA
		$3.6V \le V_I, V_O \le 5.5V$ (Note 5)	2.3 - 3.6		±10	μΑ
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μA
I _{OHZ}	Off State Current	$V_{0} = 5.5$	2 - 3.6		10	μA

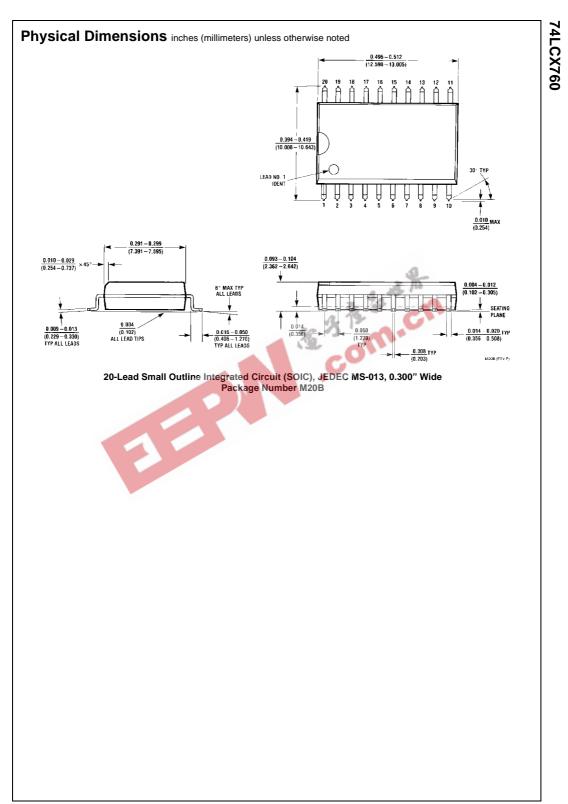
74LCX760

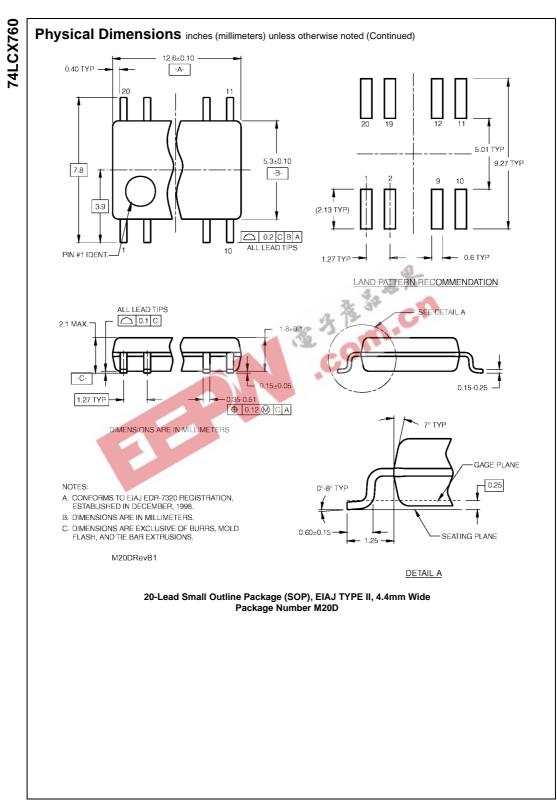
0
Q
Ň
×
12
U.
4
Ň

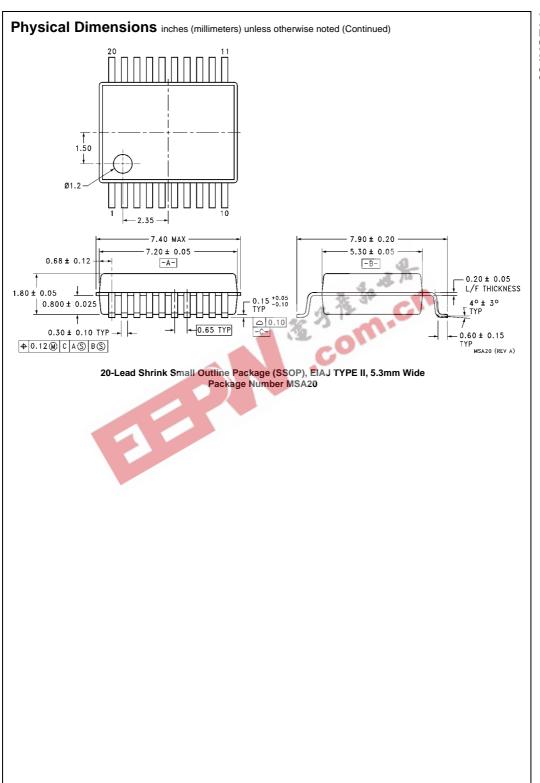
AC Electrical Characteristics

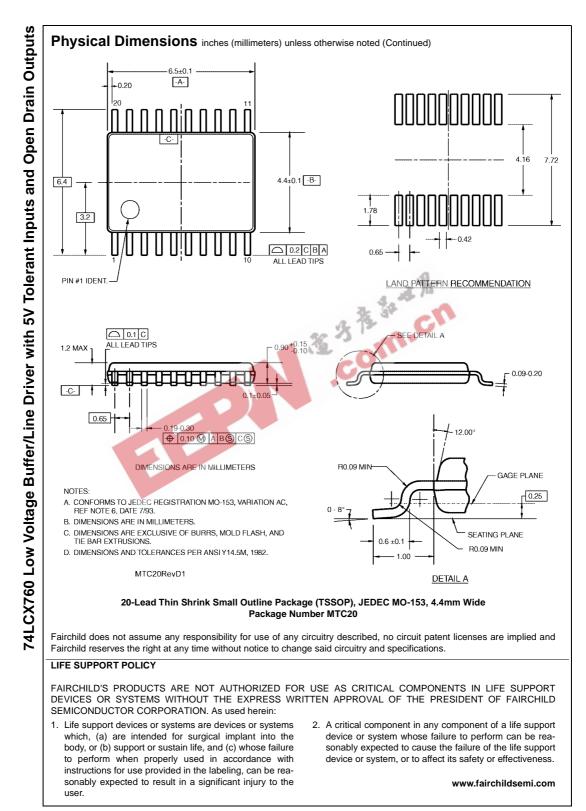

			$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$					
Symbol	Parameter	V _{CC} = 3.	$V_{CC} = 3.3V \pm 0.3V$ $C_L = 50 \text{ pF}$		V _{CC} = 2.7V C _L = 50 pF		$V_{CC} = 2.5V \pm 0.2$ $C_L = 30 \text{ pF}$	
		C _L =						
		Min	Max	Min	Max	Min	Max	
t _{PZL}	Propagation Delay	0.5	8.0	0.5	9.0	0.5	10.0	ns
t _{PLZ}	Data to Output	0.5	7.0	0.5	8.0	0.5	8.4	
t _{PZL}	Output Enable Time OE _n to Out	0.5	8.0	0.5	9.0	0.5	10.0	ns
t _{PLZ}	Output Disable Time OE _n to Out	0.5	7.0	0.5	8.0	0.5	8.4	ns
t _{OSHL}	Output to Output Skew		1.0					ns
t _{OSLH}	(Note 6)		1.0					110


Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Dynamic Switching Characteristics


Dyna	The Switching Character	131103	8		
Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$	Units
•,		3, 19 '	(V)	Typical	
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V
		$C_{L} = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	C _L = 50 pF, V _{IH} = 3.3V, V _{IL} = 0V	3.3	-0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.6	v


Symbol	Parameter	N 1	Conditions	Typical	Units
CIN	Input Capacitance	2	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
COUT	Output Capacitance		$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance		$V_{CC} = 3.3V, V_{I} = 0V \text{ or } V_{CC}, f = 10 \text{ MHz}$	10	pF



74LCX760

