
INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 Jul 15 IC24 Data Handbook 1998 Jun 23

74LV4051

FEATURES

- Optimized for low voltage applications: 1.0 to 6.0 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Low typ "ON" resistance:
- $\begin{array}{l} 60 \ \Omega \ \text{at} \ \text{V}_{\text{CC}} \text{V}_{\text{EE}} = 4.5 \ \text{V} \\ 90 \ \Omega \ \text{at} \ \text{V}_{\text{CC}} \text{V}_{\text{EE}} = 3.0 \ \text{V} \\ 145 \ \Omega \ \text{at} \ \text{V}_{\text{CC}} \text{V}_{\text{EE}} = 2.0 \ \text{V} \end{array}$
- Logic level translation: to enable 3 V logic to communicate with ± 3 V analog signals
- Typical "break before make" built in
- Output capability: non-standard
- I_{CC} category: MSI

DESCRIPTION

The 74LV4051 is a low-voltage CMOS device and is pin and function compatible with the 74HC/HCT4051.

The 74LV4051 is an 8-channel analog multiplexer/demultiplexer with three digital select inputs (S_0 to S_2) an active LOW enable input (E), eight independent inputs/outputs (Y_0 to Y_7) and a common inputs/outputs (Y_0 to Y_7). input/output (Z).

With \overline{E} LOW, one of the eight switches is selected (low impedance ON-state) by S_0 to S_2 . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S_0 to S_2 .

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S₀ to S₂, and Ē). The V_{CC} to GND ranges are 1.0 to 6.0 V. The analog inputs/outputs (Y₀ to Y₇ and Z) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. V_{CC} - V_{EE} may not exceed 6.0 V. For operation as a digital multiplexer/demultiplexer, V_{CE} is connected to GND (typical) around). V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

$GND = 0 V; I_{i}$	_{amb} = 25°C; t _r =t _f ≤ 2.5 ns	- B		
SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PZH} /t _{PZL}	Turn "ON" time E to V_{OS} S _n to V_{OS}	$C_L = 15 \text{ pF}$ $R_L = 1K\Omega$ $V_{CC} = 3.3 \text{ V}$	23 22	ns
t _{PHZ} /t _{PLZ}	Turn "OFF" time \overline{E} to V _{OS} S _n to V _{OS}	Contra	25 20	115
Cl	Input capacitance		3.5	
C _{PD}	Power dissipation capacitance per switch	See Notes 1 and 2	25	pF
C _S	Maximum switch capacitance independent (Y) common (Z)		5 25	

NOTES:

2.

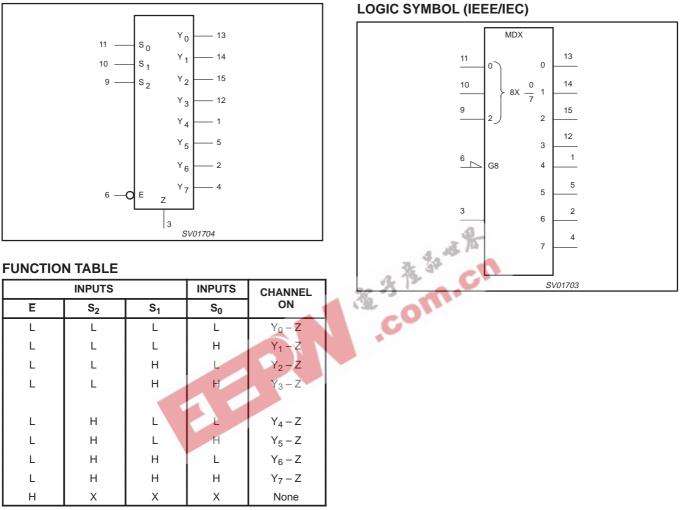
 $\begin{array}{l} C_{PD} \text{ is used to determine the dynamic power dissipation } (P_{D} \text{ in } \mu W) \\ P_{D} = C_{PD} \times V_{CC}{}^{2} \times f_{i} + \overset{\frown}{\Sigma} ((C_{L} + C_{S}) \times V_{CC}{}^{2} \times f_{o}) \text{ where:} \\ f_{i} = \text{ input frequency in MHz; } C_{L} = \text{ output load capacity in } pF; \\ f_{o} = \text{ output frequency in MHz; } C_{S} = \text{maximum switch capacitance in } pF; \end{array}$ 1.

 V_{CC} = supply voltage in V; $\sum ((C_L + C_S) \times V_{CC}^2 \times f_o)$ = sum of the outputs. The condition is V_I = GND to V_{CC}.

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	Code
16-Pin Plastic DIL	-40°C to +125°C	74LV4051 N	74LV4051 N	SOT38-4
16-Pin Plastic SO	-40°C to +125°C	74LV4051 D	74LV4051 D	SOT109-1
16-Pin Plastic SSOP Type II	-40°C to +125°C	74LV4051 DB	74LV4051 DB	SOT338-1
16-Pin Plastic TSSOP Type I	-40°C to +125°C	74LV4051 PW	74LV4051PW DH	SOT403-1

PIN CONFIGURATION


Y ₄ 1		6 V _{CC}
Y ₆ 2	1	5 Y ₂
Z 3	1	4 Y ₁
Y ₇ 4	1	3 Y ₀
Y ₅ 5	1	2 Y ₃
Ē 6	1	1 S ₀
V _{EE} 7	1	0 S ₁
GND 8	Ş	9 S ₂
	SV0	1702

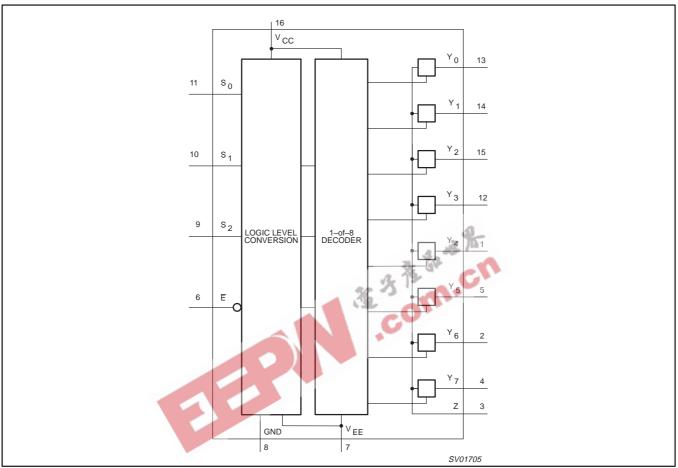
PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION				
3	Z	Common input/output				
6	Ē	Enable input (active LOW)				
7	V _{EE}	Negative supply voltage				
8	GND	Ground (0 V)				
11, 10, 9	S ₀ to S ₂	Select inputs				
13, 14, 15, 12, 1, 5, 2, 4	Y_0 to Y_7	Independent inputs/outputs				
16	V _{CC}	Positive supply voltage				

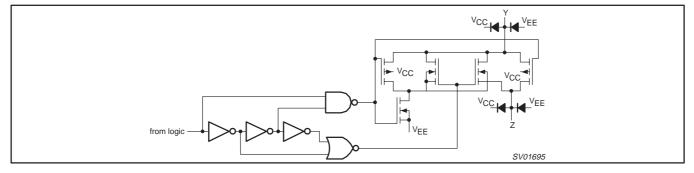
74LV4051

LOGIC SYMBOL

NOTES:


H = HIGH voltage level

L = LOW voltage level


X = don't care

74LV4051

FUNCTIONAL DIAGRAM

SCHEMATIC DIAGRAM (ONE SWITCH)

74LV4051

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134).

Voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
$\pm I_{IK}$	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5 \text{ V}$	20	mA
$\pm I_{SK}$	DC switch diode current	$V_{\rm S}$ < -0.5 or $V_{\rm S}$ > $V_{\rm CC}$ + 0.5 V	20	mA
$\pm I_S$	DC switch current	$-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	25	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

RECOMMENDED OPERATING CONDITIONS											
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT					
V _{CC}	DC supply voltage	See Note 1 and Figure 5	1.0	3.3	6.0	V					
VI	Input voltage	C	0	-	V _{CC}	V					
Vo	Output voltage		0	-	V _{CC}	V					
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C					
t _r , t _f	Input rise and fall times	$V_{CC} = 1.0 V \text{ to } 2.0 V$ $V_{CC} = 2.0 V \text{ to } 2.7 V$ $V_{CC} = 2.7 V \text{ to } 6.0 V$			500 200 100	ns/V					

NOTE:

1. The LV is guaranteed to function down to $V_{CC} = 1.0V$ (input levels GND or V_{CC}); DC characteristics are guaranteed from $V_{CC} = 1.2V$ to $V_{CC} = 6.0V$.

74LV4051

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, voltages are referenced to GND (ground = 0 V)

						LIMITS	_		
SYMBOL	PARAMETER	TEST CO	ONDITIONS	-4()°C to +8	5°C	-40°C to	o +125°C	
				MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2 V		0.9			0.9		
		V _{CC} = 2.0 V		1.4			1.4		1
VIH	HIGH level Input voltage	V _{CC} = 2.7 to 3.6 V		2.0			2.0		V
	Voltage	V _{CC} = 4.5 V		3.15			3.15		1
		V _{CC} = 6.0 V		4.20			4.20		1
		V _{CC} = 1.2 V				0.3		0.3	
		V _{CC} = 2.0 V				0.6		0.6	1
VIL	LOW level Input voltage	V _{CC} = 2.7 to 3.6 V				0.8		0.8	V
	Voltage	V _{CC} = 4.5 V				1.35		1.35	1
		V _{CC} = 6.0 V				1.80		1.80	1
	Input leakage	V _{CC} = 3.6				1.0		1.0	
±II	current	$V_{CC} = 6.0$	$V_1 = V_{CC}$ or GND		1.0	2.0		2.0	- μΑ
	Analog switch	V _{CC} = 3.6	$V_I = V_{IH} \text{ or } V_{IL}$	九陽	1	1.0		1.0	
±I _S	OFF-state current per channel	V _{CC} = 6.0	IV _S I = V _{CC} - GND (See Figure 2)		N .	2.0		2.0	- μΑ
	Analog switch	V _{CC} = 3.6	$V_{I} = V_{IH} \text{ or } V_{IL}$	CO	1	1.0		1.0	
±ls	ON-state current	V _{CC} = 6.0	IV _S I = V _{CC} - GND (See Figure 3)			2.0		2.0	μΑ
1	Quiescent supply	V _{CC} = 3.6 V	$V_{I} = V_{CC}$ or GND			20.0		40	
Icc	current	$V_{\rm CC} = 6.0 \text{ V}$	$V_{IS} = GND \text{ or } V_{CC};$ $V_{OS} = V_{CC} \text{ or } GND$			40.0		80	μΑ
ΔI_{CC}	Additional quiescent supply current per input	$V_{\rm CC} = 2.7$ to 3.6 V	V _I = V _{CC} – 0.6 V			500		850	μA
		V _{CC} = 1.2 V	$V_{I} = V_{IH} \text{ or } V_{IL};$ $I_{S} = 100 \mu \text{A};$ $V_{IS} = V_{CC} \text{ to GND}$						
	ONI registeres	V _{CC} = 2.0 V			145	325		375	1
R _{ON}	ON-resistance (peak)	V _{CC} = 2.7 V	$V_{I} = V_{IH} \text{ or } V_{IL};$		90	200		235	Ω
	(1 · · · · /	V _{CC} = 3.0 to 3.6 V	$I_{\rm S} = 1000 {}_{\rm u}{\rm A};$		80	180		210	1
		V _{CC} = 4.5 V	$V_{IS} = V_{CC}$ to GND		60	135		160	1
		V _{CC} = 6.0 V	-		55	125		145	1
		V _{CC} = 1.2 V	$V_{I} = V_{IH} \text{ or } V_{IL};$ $I_{S} = 100 _{\mu}\text{A};$ $V_{IS} = \text{GND}$		225				
	ON-resistance	V _{CC} = 2.0 V			110	235		270	1
R _{ON}	(rail)	V _{CC} = 2.7 V	$V_{I} = V_{IH} \text{ or } V_{IL};$		70	145		165	Ω
		V _{CC} = 3.0 to 3.6 V	$I_{S} = 1000 \mu A;$		60	130	İ 👘	150	1
		V _{CC} = 4.5 V	V _{IS =} GND		45	100	İ	115	1
		V _{CC} = 6.0 V	1		40	85		100	1

NOTES:

All typical values are measured at T_{amb} = 25°C.
 At supply voltages approaching 1.2 V, the analog switch ON-resistance becomes extremely non-linear. Therefore, it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
 R_{ON} (MAX) data is preliminary.

74LV4051

DC ELECTRICAL CHARACTERISTICS (Continued)

						LIMITS			
SYMBOL	PARAMETER	TEST CO	NDITIONS	-4	0°C to +85	õ°C	-40°C to	UNIT	
				MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2 V	$V_{I} = V_{IH} \text{ or } V_{IL};$ $I_{S} = 100 \ _{\mu}A;$ $V_{IS} = V_{CC}$		250				Ω
_	ON-resistance	V _{CC} = 2.0 V			120	320		370	
R _{ON}	(rail)	V _{CC} = 2.7 V	$V_{I} = V_{IH} \text{ or } V_{IL};$		75	195		225	1
	V _{CC} = 3.0 to 3.6 V	$I_{S} = 1000 \mu A;$		70	175		205	Ω	
		V _{CC} = 4.5 V	$V_{IS} = V_{CC}$		50	130		150	1
		$V_{CC} = 6.0 V$			45	120		135	1
		V _{CC} = 1.2 V							
	Maximum variation	V _{CC} = 2.0 V			5				1
ΔR_{ON}	of ON-resistance	V _{CC} = 2.7 V	$V_{I} = V_{IH} \text{ or } V_{IL};$		4				Ω
ANON	between any two	V _{CC} = 3.0 to 3.6 V	$V_{IS} = V_{CC}$ to GND		4				
	channels	V _{CC} = 4.5 V	1		3	Sea.			1
		V _{CC} = 6.0 V			2	~			1
	l values are measured	d at $T_{amb} = 25^{\circ}C.$		次落	30		oforo it io ro	<u>.</u>	

NOTES:
1. All typical values are measured at T_{amb} = 25°C.
2. At supply voltages approaching 1.2 V, the analog switch ON-resistance becomes extremely non-linear. Therefore, it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
3. R_{ON} (MAX) data is preliminary. , these

74LV4051

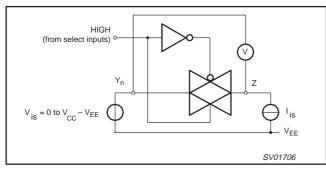


Figure 1. Test circuit for measuring ON-resistance (R_{ON}).

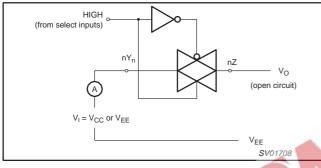


Figure 3. Test circuit for measuring ON-state current.

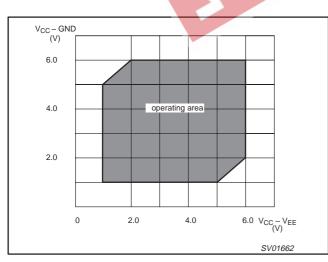


Figure 5. Guaranteed operating area as a function of the supply voltages.

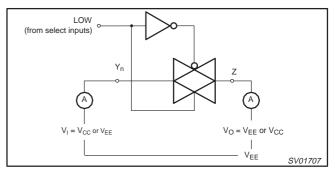


Figure 2. Test circuit for measuring OFF-state current.

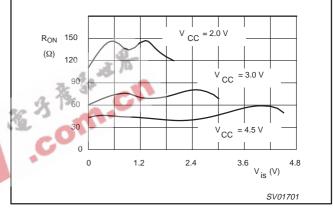


Figure 4. Typical ON-resistance (R_{on}) as a function of input voltage (V_{is}) for V_{is} = 0 to $V_{CC} - V_{EE}$.

74LV4051

AC CHARACTERISTICS

 $GND = 0 \text{ V}; t_r = t_f \leq 2.5 ns; C_L = 50 pF$

		CONDITION	1			LIMITS			
SYMBOL	PARAMETER	CONDITION			40 to +85 °	С	-40 to -	+125 °C	UNIT
		V _{CC} (V)	OTHER	MIN	TYP ¹	MAX	MIN	МАХ	
		1.2			25				
		2.0			9	17		20	
t _{PHL/} t _{PLH}	Propagation delay	2.7	R _L = ∞ ; C _L = 50 pF		6	13		15	ns
PHL/PLH	V _{is} to V _{os}	3.0 to 3.6	Figure 12		5 ²	10		12	110
		4.5	-		4	9		10	
		6.0			3	8		8	
		1.2			145				
		2.0	$R_L = 1k\Omega$;		49	94		112	ns
t _{PZH} /t _{PZL}	Turn-on time	2.7	$C_L = 50 \text{ pF}$		36	69		83	
ΨZH/ΨZL	E to V _{OS}	3.0 to 3.6	Figures 13		28 ²	55		66	
		4.5	and 1		25	47		56	
		6.0	3.1	9	19	38		43	
		1.2		~	140				ns
		2.0	$R_L = 1k\Omega;$		48	90		107	
t _{PZH} /t _{PZL}	Turn-on time	2.7	$C_L = 50 \text{ pF}$		35	66		79	
'PZH' 'PZL	S _n to V _{OS}	3.0 to 3.6	Figures 13		27 ²	53		63	
		4.5	and 1		24	45		54	
		6.0			18	34		41	
		1.2			145				
		2.0	$R_L = 1k\Omega$		51	93		110	
t _{PHZ} /t _{PLZ}	Turn-off time	2.7	$C_L = 50 pF$		38	69		82	ns
'PHZ/'PLZ	E to V _{OS}	3.0 to 3.6	Figures 13 and 1		30 ²	56		66	115
		4.5	and 1		29	48		56	
		6.0			21	37		44	
		1.2			115				
		2.0	$R_L = 1k\Omega$		41	73		90	
t _{PHZ} /t _{PLZ}	Turn-off time	2.7	$C_L = 50 pF$		31	54		67	ns
'PHZ/'PLZ	S _n to V _{OS}	3.0 to 3.6	Figures 13		24 ²	44		54	ns
		4.5	and 1		22	37		46	
		6.0			17	29		36	

NOTES:

1. Unless otherwise stated, all typical values are measured at $T_{amb} = 25^{\circ}C$ 2. Typical values are measured at $V_{CC} = 3.3 \text{ V}$.

74LV4051

ADDITIONAL AC CHARACTERISTICS

Recommended conditions and typical values

GND = 0 V; $t_r = t_f \le 2.5$ ns

SYMBOL	PARAMETER	TYP.	UNIT	V _{CC} (V)	V _{is(p-p)} (V)	CONDITIONS
	Sine-wave distortion f = 1 kHz	0.80 0.40	%	3.0 6.0	2.75 5.50	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pf}$ Figure 9 and 10
	Sine-wave distortion f = 10 kHz	2.40 1.20	%	3.0 6.0	2.75 5.50	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pf}$ Figure 9 and 10
	Switch "OFF" signal feed through	-50 -50	dB	3.0 6.0	Note 1	$R_L = 600 \ \Omega$; $C_L = 50 \ pf$; f= 1 MHz Figures 5 and 11
	Crosstalk between any two switches/multiplexers	-60 -60	dB	3.0 6.0	Note 1	R_L = 600 Ω; C_L = 50 pf; f= 1 MHz Figure 8
V _(p-p)	Crosstalk voltage between enable or address input to any switch (peak-to-peak value)	110 120	mV	3.0 6.0		$R_L = 600 \Omega$; $C_L = 50 pf$; f= 1 MHz (S _n or Ē, square wave between V _{CC} and GND t _r = t _f = 6 ns) Figure 8
f _{max}	Minimum frequency response (–3 dB)	180 200	MHz	3.0 6.0	Note 2	$R_L = 50 \Omega$; $C_L = 50 pF$ Figures 5, 8 and 9
CS	Maximum switch capacitance	5	pf		2. 3	ê 🔥
C _S ENERAL N / _{is} is the inp	Maximum switch capacitance	5 s assigne	ed as an	input.	5 7 1	Figures 5, 8 and 9

5 (dB)

0

-5

10

++++

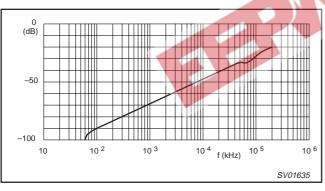
10²

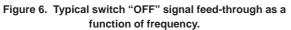
10 ³

Figure 7. Typical frequency response.

10 4

f (kHz)


10 ⁵


10⁶

SV01636

GENERAL NOTES:

- Adjust input voltage V_{is} is 0 dBm level (0 dBm = 1 mW into 600 Ω). 1.
- Adjust input voltage V_{is} is 0 dBm level at V_{OS} for 1 MHz (0 dBm = 1 mW into 50 Ω). 2.

NOTES TO FIGURES 6 AND 7:

Test conditions: V_{CC} = 3.0 V; GND = 0 V; V_{EE} = -3.0 V; R_L = 50 Ω ; R_{SOURCE} = 1k Ω .

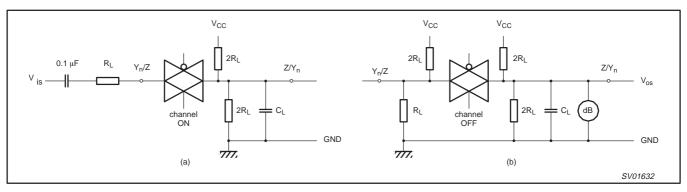


Figure 8. Test circuit for measuring crosstalk between any two switches. (a) channel ON condition; (b) channel OFF condition.

74LV4051

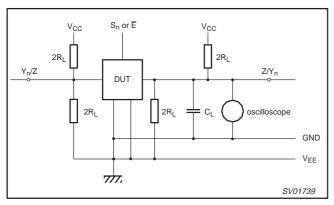


Figure 9. Test circuit for measuring crosstalk between control and any switch.

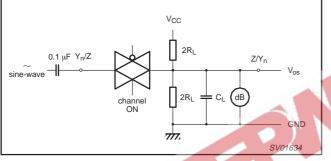


Figure 10. Test circuit for measuring minimum frequency response.

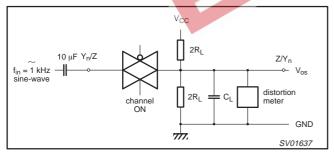
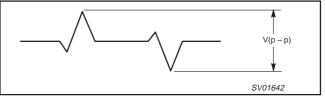



Figure 11. Test circuit for measuring sine-wave distortion.

NOTE TO FIGURE 8: The crosstalk is defined as follows (oscilloscope output):

m.cr

NOTE TO FIGURE 9: Adjust input voltage to obtain 0 dBm at V_{OS} when F_{in} = 1 MHz. After set-up frequency of f_{in} is increased to obtain a reading of –3 dB at V_{OS}.

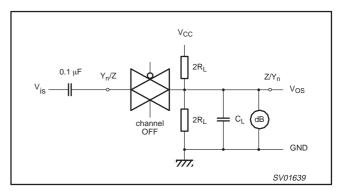


Figure 12. Test circuit for measuring switch "OFF" signal feed-through.

74LV4051

VM

outputs enabled

SV01640

WAVEFORMS

 V_M = 1.5 V at 2.7 V \leq V_{CC} \leq 3.6 V V_M = 0.5 \times V_{CC} at 2.7 V > V_{CC} > 3.6 V V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load $\begin{array}{l} \mathsf{V_X} = \mathsf{V_{OL}} + 0.3 \; \forall \; at \; 2.7 \; \forall \leq \mathsf{V_{CC}} \leq 3.6 \; \forall \\ \mathsf{V_X} = \mathsf{V_{OL}} + 0.1 \; \times \; \mathsf{V_{CC}} \; at \; 2.7 \; \forall > \mathsf{V_{CC}} > 3.6 \; \forall \\ \mathsf{V_Y} = \mathsf{V_{OH}} - 0.3 \; \forall \; at \; 2.7 \; \forall \leq \mathsf{V_{CC}} \leq 3.6 \; \forall \\ \mathsf{V_Y} = \mathsf{V_{OH}} - 0.1 \; \times \; \mathsf{V_{CC}} \; at \; 2.7 \; \forall > \mathsf{V_{CC}} > 3.6 \; \forall \\ \end{array}$

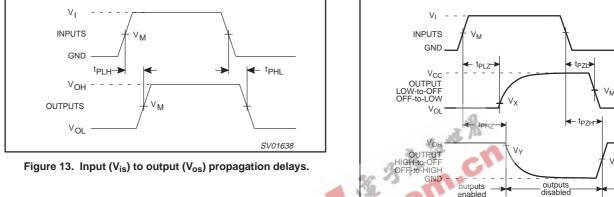


Figure 14. Turn-on and turn-off times

for the inputs (S_n, \overline{E}) to the output (V_{os}) .

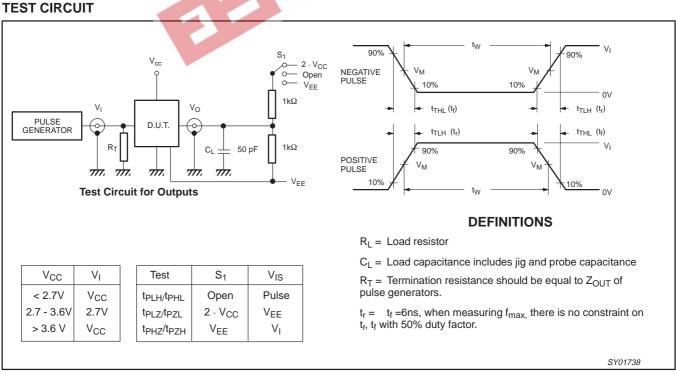
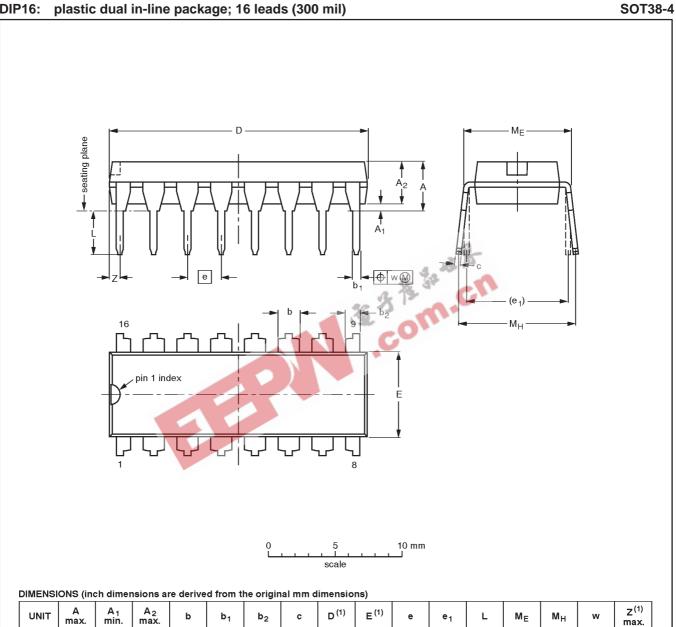
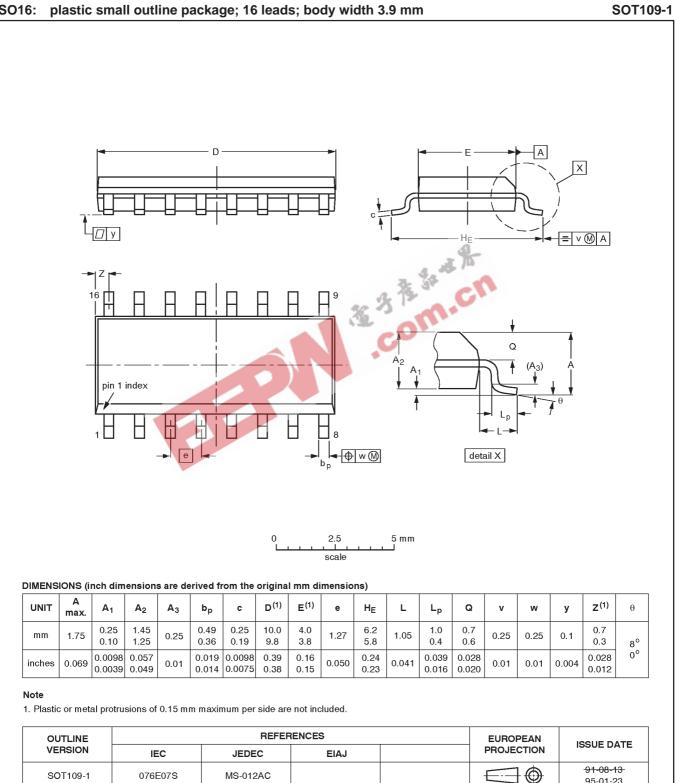



Figure 15. Load circuitry for switching times.

DIP16: plastic dual in-line package; 16 leads (300 mil)

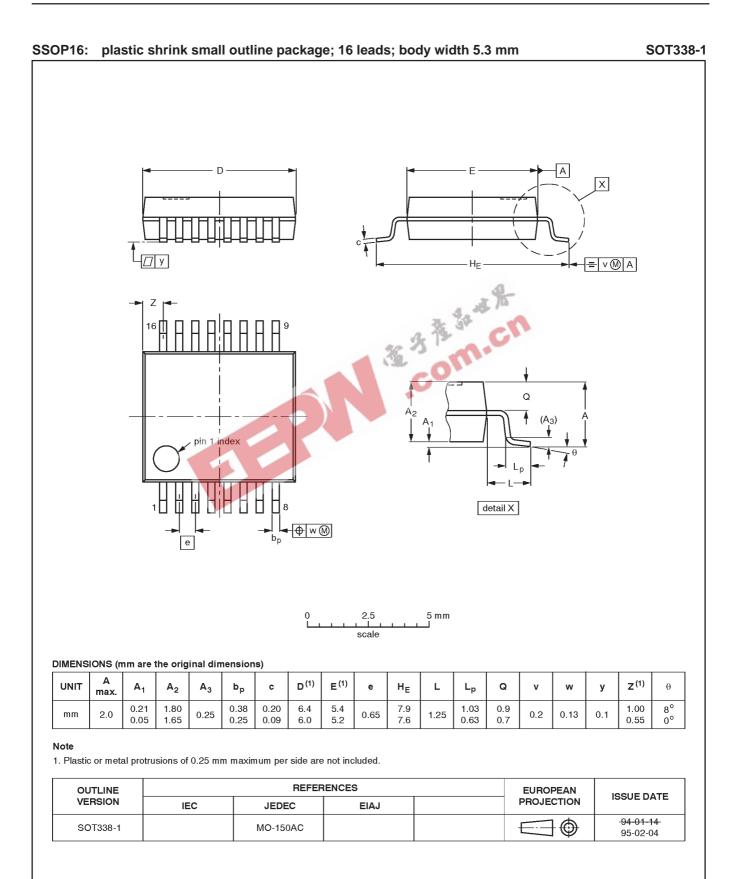
UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	c	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.030

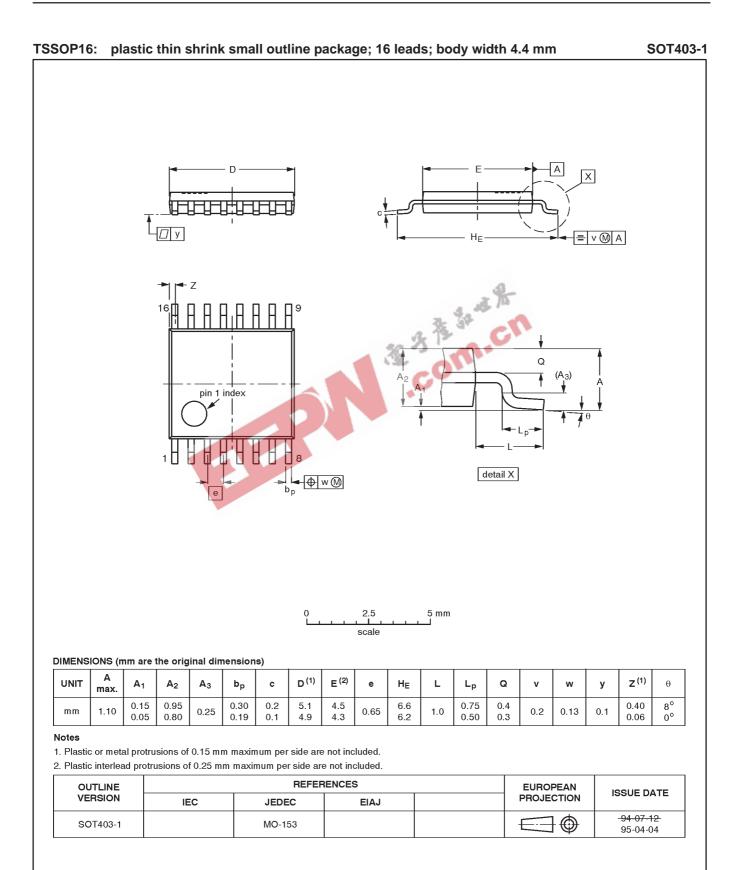

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT38-4					-92-11-17 95-01-14	

Product specification


74LV4051


SO16:

74LV4051

95-01-23

74LV4051

Product specification

74LV4051

NOTES

74LV4051

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Argues Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone 800-234-7381

© Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Document order number:

PHILIPS

Date of release: 05-96 9397-750-04459

Let's make things better.

