INTEGRATED CIRCUITS

DATA SHEET

74ABT162240 74ABTH162240

16-bit inverting buffer/driver with 30Ω series termination resistors

Product specification Supersedes data of 1998 Jan 16 IC23 Data Handbook

16-bit inverting buffer/driver with 30 Ω series termination resistors (3-State)

74ABT162240 74ABTH162240

FEATURES

- 16-bit bus interface
- 3-State buffers
- Output capability: +12mA/-32mA
- TTL input and output switching levels
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power-up 3-State
- 74ABTH162240 incorporates bus hold data inputs which eliminate the need for external pull up resistors to hold unused inputs
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model

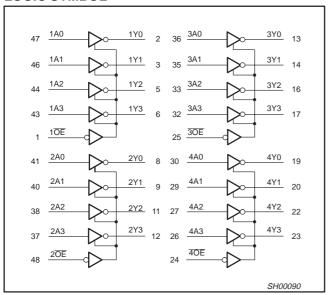
DESCRIPTION

The 74ABT162240 is a high-performance BiCMOS device which combines low static and dynamic power dissipation with high speed.

This device is an inverting 16-bit buffer that is ideal for driving bus lines. The device features four Output Enables (1OE, 2OE, 3OE, 4OE), each controlling four of the 3-State outputs.

Two options are available, 74ABT162240 which does not have the bus hold feature and 74ABTH162240 which incorporates the bus hold feature.

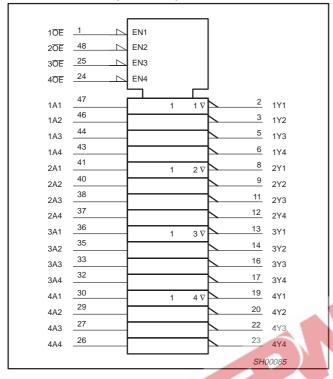
3...

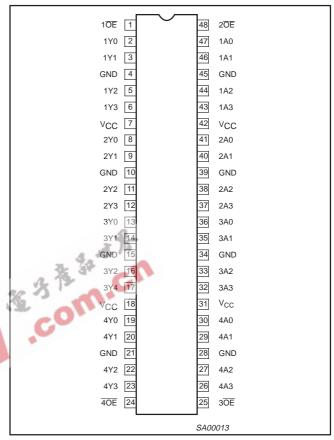

QUICK REFERENCE DATA

SYMBOL	PARAMETER	PARAMETER CONDITIONS $T_{amb} = 25^{\circ}C$				
t _{PLH} t _{PHL}	Propagation delay nAx to nYx	$C_L = 50pF;$ $V_{CC} =$	2.7 2.6	ns		
C _{IN}	Input capacitance nOE	$V_1 = 0V \text{ or } 3.0V$	4	pF		
C _{OUT}	Output capacitance	Outputs disabled; V _O = 0V or	6	pF		
I _{CCZ}	Quiescent supply current	Outputs disabled; V _{CC} =	500	μΑ		
I _{CCL}	Quioscont supply culterit	Outputs low; V _{CC} = 5.5V	8	mA		

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ABT162240 DL	BT162240 DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ABT162240 DGG	BT162240 DGG	SOT362-1
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ABTH162240 DL	BH162240 DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ABTH162240 DGG	BH162240 DGG	SOT362-1


LOGIC SYMBOL


16-bit inverting buffer/driver with 30Ω series termination resistors (3-State)

74ABT162240 74ABTH162240

LOGIC SYMBOL (IEEE/IEC)

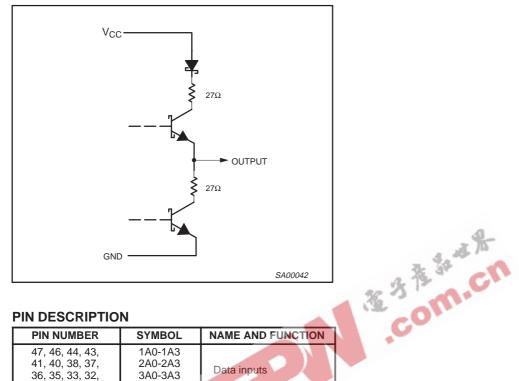
PIN CONFIGURATION

FUNCTION TABLE

Inp	uts	Outputs
nOE	nAx	n <u>∀</u> x
L	L	Н
L	Н	L
Н	Х	Z

H = High voltage level

L = Low voltage level


X = Don't care

Z = High Impedance "off" state

16-bit inverting buffer/driver with 30Ω series termination resistors (3-State)

74ABT162240 74ABTH162240

SCHEMATIC OF Y OUTPUTS

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
47, 46, 44, 43, 41, 40, 38, 37, 36, 35, 33, 32, 30, 29, 27, 26	1A0-1A3 2A0-2A3 3A0-3A3 4A0-4A3	Data inputs
2, 3, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23	1 <u>Y</u> 0-1 <u>Y</u> 3 2 <u>Y</u> 0-2 <u>Y</u> 3 3 <u>Y</u> 0-3 <u>Y</u> 3 4 <u>Y</u> 0-4 <u>Y</u> 3	Data outputs
1, 48, 25, 24	1 <u>OE</u> , 2 <u>OE</u> , 3 <u>OE</u> , 4 <u>OE</u>	Output enables
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage

16-bit inverting buffer/driver with 30Ω series termination resistors (3-State)

74ABT162240 74ABTH162240

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
I _{IK}	DC input diode current	V _I < 0	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or High state	-0.5 to +5.5	V
1	DC output current	Output in Low state	128	mA
IOUT	DC output current	Output in High state	-64	- IIIA
T _{stg}	Storage temperature range		-65 to +150	°C

NOTES:

RECOMMENDED OPERATING CONDITIONS

SYMBOL	DADAMETED	LIN	IITS	UNIT
STWBUL	PARAMETER	MIN	MAX	T UNIT
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Input voltage		0.8	V
I _{OH}	High-level output current		-32	mA
I _{OL}	Low-level output current		32	mA
	Low-level output current; current duty cycle ≤ 50%; f ≥ 1kHz		12	7
Δt/Δν	Input transition rise or fall rate; Outputs enabled	0	10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

16-bit inverting buffer/driver with 30Ω series termination resistors (3-State)

74ABT162240 74ABTH162240

DC ELECTRICAL CHARACTERISTICS

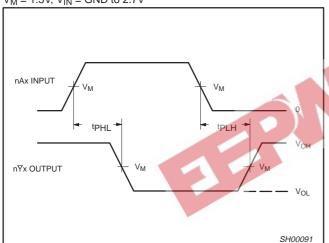
				LIMITS						
SYMBOL	PARAMETER	S	T _{amb} = +25°C				-40°C 85°C	UNIT		
						Max	Min	Max	1	
V _{IK}	Input clamp voltage	$V_{CC} = 4.5V; I_{IK} = -18mA$			-0.9	-1.2		-1.2	V	
		$V_{CC} = 4.5V; I_{OH} = -3mA; V_{I} = V$	_{IL} or V _{IH}	2.5	2.9		2.5		V	
V_{OH}	High-level output voltage	$V_{CC} = 5.0V; I_{OH} = -3mA; V_I = V$	_{IL} or V _{IH}	3.0	3.4		3.0		V	
		$V_{CC} = 4.5V; I_{OH} = -32mA; V_{I} = -32mA$	V _{IL} or V _{IH}	2.0	2.4		2.0		V	
V _{OL}	Low-level output voltage	$V_{CC} = 4.5V; I_{OL} = 8mA; V_I = V_{IL}$	or V _{IH}			0.65		0.65	V	
VOL	Low-level output voltage	$V_{CC} = 4.5V; I_{OL} = 12mA; V_I = V$	_{IL} or V _{IH}			0.80		0.80	V	
I _I	Input leakage current	$V_{CC} = 5.5V; V_I = GND \text{ or } 5.5V$			±0.01	±1.0		±1.0	μΑ	
	Input leakage current	$V_{CC} = 5.5V$; $V_I = V_{CC}$ or GND	Control pins		±0.01	±1		±1	μΑ	
I _I	74ABTH162240	$V_{CC} = 5.5V$; $V_I = V_{CC}$	Data pins	- 4	0.01	1		1	μΑ	
		$V_{CC} = 5.5V; V_I = 0$	Data pins	J45- /	-2	-3		- 5	μΑ	
	Book Hald assessed A faculta 3	$V_{CC} = 4.5V; V_I = 0.8V$. %.	50	10		50			
I _{HOLD}	Bus Hold current A inputs ³ 74ABTH162240	$V_{CC} = 4.5V; V_I = 2.0V$	-75			-7 5		μΑ		
		$V_{CC} = 5.5V; V_I = 0 \text{ to } 5.5V$	±500							
I_{OFF}	Power-off leakage current	$V_{CC} = 0.0V$; V_{O} or $V_{I} \le 4.5V$	C		±5.0	±100		±100	μΑ	
I_{PU}/I_{PD}	Power-up/down 3-State output current	$V_{CC} = 2.0V$; $V_O = 0.5V$; $V_I = GN$ $V_{OE} = V_{CC}$	ID or V _{CC} ;		±5.0	±50		±50	μА	
I _{OZH}	3-State output High current	$V_{CC} = 5.5V; V_O = 2.7V; V_I = V_{IL}$	or V _{IH}		1.0	10		10	μА	
I _{OZL}	3-State output Low current	$V_{CC} = 5.5V$; $V_{O} = 0.5V$; $V_{I} = V_{IL}$	or V _{IH}		-1.0	-10		-10	μΑ	
I _{CEX}	Output high leakage current	$V_{CC} = 5.5V$; $V_{O} = 5.5V$; $V_{I} = GN$	ID or V _{CC}		1.0	50		50	μΑ	
ΙO	Output current ¹	$V_{CC} = 5.5V; V_{O} = 2.5V$		-50	-70	-180	-50	-180	mA	
I _{CCH}		V_{CC} = 5.5V; Outputs High, V_{I} =	GND or V _{CC}		0.5	1.0		1.0	mA	
I _{CCL}	Quiescent supply current	$V_{CC} = 5.5V$; Outputs Low, $V_I = 0$	GND or V _{CC}		8	19		19	mA	
I _{CCZ}		V_{CC} = 5.5V; Outputs 3-State; V_{I} = GND or V_{CC}		0.5	1.0		1.0	mA		
Δl _{CC}	Additional supply current per input pin ² 74ABT162240	Outputs enabled, one input at 3 inputs at V_{CC} or GND; $V_{CC} = 5$.			10	200		200	μА	
Δl _{CC}	Additional supply current per input pin ² 74ABTH162240	Outputs enabled, one input at 3 inputs at V _{CC} or GND; V _{CC} = 5.			0.2	1.0		1.0	mA	

NOTES:

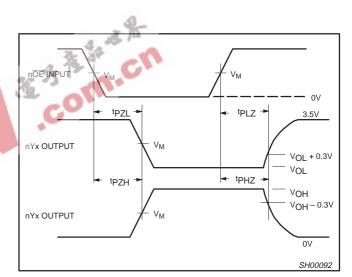
- Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 This is the increase in supply current for each input at 3.4V.
 This is the bus hold overdrive current required to force the input to the opposite logic state.

16-bit inverting buffer/driver with 30Ω series termination resistors (3-State)

74ABT162240 74ABTH162240


AC CHARACTERISTICS

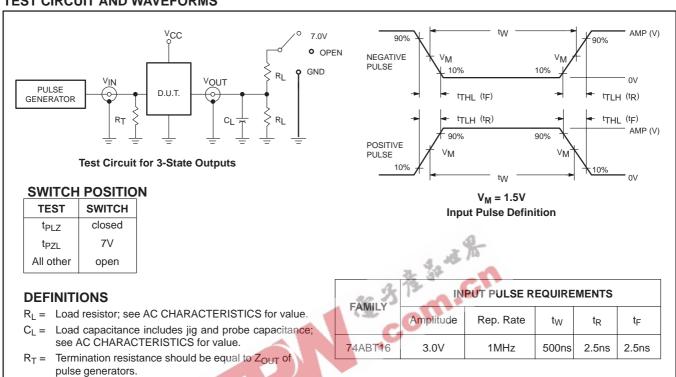
GND = 0V; t_R = t_F = 2.5ns; C_L = 50pF; R_L = 500 Ω ; T_{amb} = -40°C to +85°C.


					LIMIT	rs		
SYMBOL	PARAMETER	WAVEFORM	T _e	_{amb} = +25° 'CC = +5.0'	C V	T _{amb} = -40° V _{CC} = +5.	°C to +85°C .0V ±0.5V	UNIT
			Min	Тур	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation delay nAx to nŸx	1	1.0 1.0	2.7 2.6	3.8 3.2	1.0 1.0	4.2 3.7	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.2 1.0	2.3 2.9	3.2 3.8	1.2 1.0	4.0 4.7	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low level	2	1.6 1.4	3.0 2.8	4.1 3.8	1.6 1.4	4.7 4.0	ns

AC WAVEFORMS

 $V_M = 1.5V$, $V_{IN} = GND$ to 2.7V

Waveform 1. Input (nAx) to Output (nYx) Propagation Delays

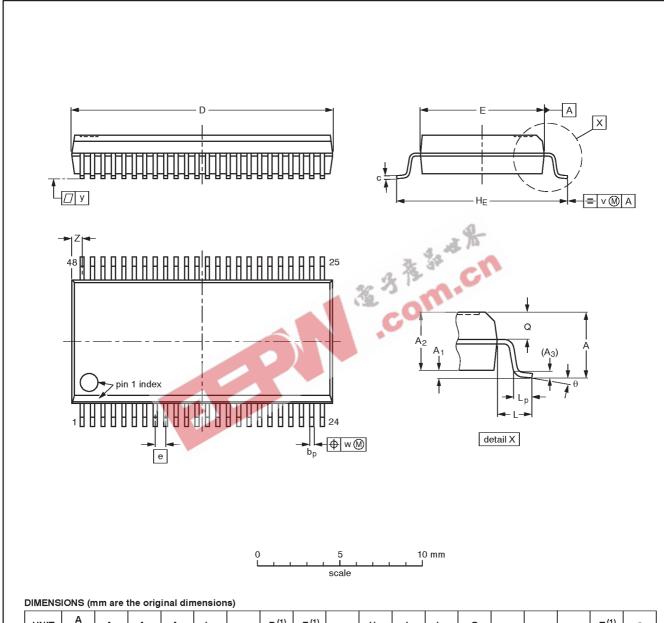

Waveform 2. 3-State Output Enable and Disable Times

16-bit inverting buffer/driver with 30Ω series termination resistors (3-State)

74ABT162240 74ABTH162240

SH00093

TEST CIRCUIT AND WAVEFORMS



16-bit inverting buffer/driver with 30Ω Series Termination Resistors (3-State)

74ABT162240 74ABTH162240

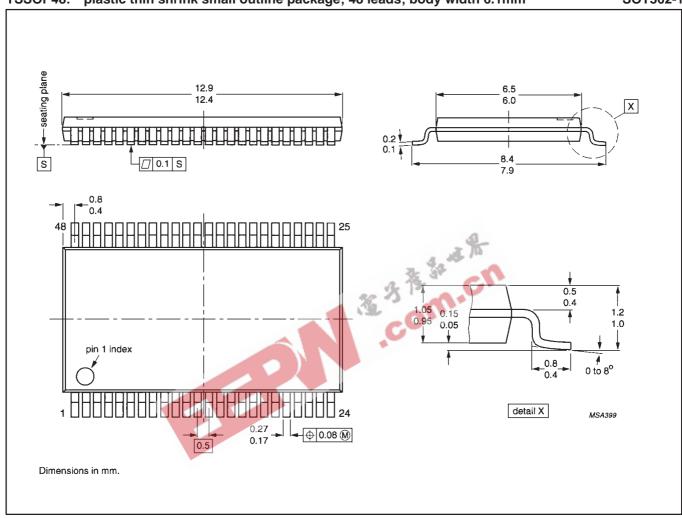
SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm

SOT370-1

UNIT	A max.	A ₁	A ₂	A ₃	рb	O	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.8	0.4 0.2	2.35 2.20	0.25	0.3 0.2	0.22 0.13	16.00 15.75	7.6 7.4	0.635	10.4 10.1	1.4	1.0 0.6	1.2 1.0	0.25	0.18	0.1	0.85 0.40	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT370-1		MO-118AA				93-11-02- 95-02-04

16-bit inverting buffer/driver with 30Ω Series Termination Resistors (3-State)

74ABT162240 74ABTH162240

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1mm

SOT362-1

16-bit inverting buffer/driver with 30Ω Series Termination Resistors (3-State)

74ABT162240 74ABTH162240

NOTES

16-bit inverting buffer/driver with 30 Ω series termination resistors (3-State)

74ABT162240 74ABTH162240

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-03482

Let's make things better.

