Revised June 2005 SEMICONDUCTOR 74LCXR162245 Features The LCXR162245 contains sixteen non-inverting bidirec-■ 5V tolerant inputs and outputs 2.3V–3.6V V_{CC} specifications provided A and B side outputs have equivalent 26Ω series resistors ■ 5.3 ns t_{PD} max (V_{CC} = 3.3V), 20 μ A I_{CC} max Power down high impedance inputs and outputs ■ Supports live insertion/withdrawal (Note 1) Flow through pinout Implements patented noise/EMI reduction circuitry In addition, all A and B outputs include equivalent 26Ω Latch-up performance exceeds 500 mA ESD performance Human body model > 2000V Machine model > 200V Note 1: To ensure the high-impedance state during power up or down $\overline{\text{OE}}$ should be tied to $V_{\mbox{\scriptsize CC}}$ through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver. **Ordering Code:**

Order Number	Package Number	Package Description
74LCXR162245MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [RAIL]
74LCXR162245MEX		48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [TAPE and REEL]
74LCXR162245MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [RAIL]
74LCXR162245MTX	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [TAPE and REEL]
Dovices also available in	Tana and Real Specify by	apponding the suffix letter "x" to the ordering code

Devices also available in Tape and Reel. Specify by appending the suffix letter "x" to the ordering code

Bo Bro 8. . B12 B13 B₁₄ B₁

A10 A11 A12 A13 A14 A15

OE;

 T/\bar{R}

Logic Symbol

B₃ B₄ Br Be B₇ B₈

Ba

OF

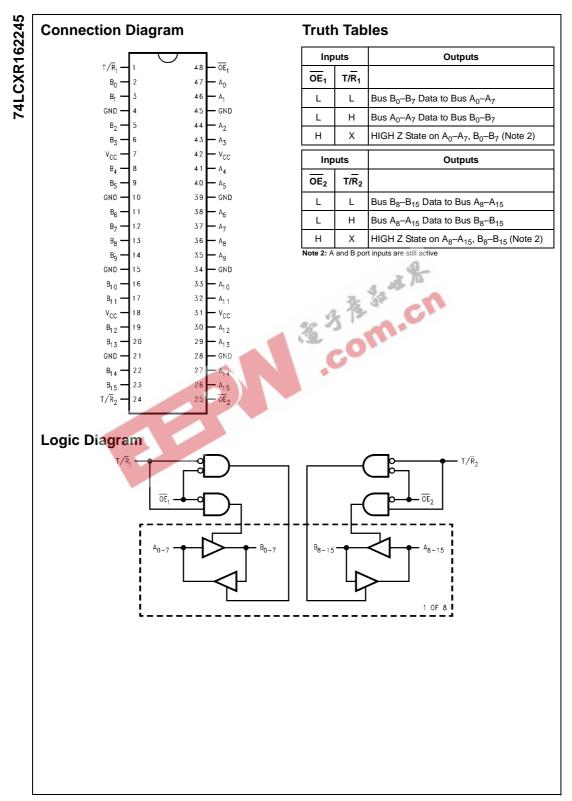
Pin Descriptions

Pin Names	Description
OE n	Output Enable Input
T/R _n	Transmit/Receive Input
A ₀ -A ₁₅	Side A Inputs or 3-STATE Outputs
B ₀ -B ₁₅	Side B Inputs or 3-STATE Outputs

© 2005 Fairchild Semiconductor Corporation DS500052 Print form created on June 10, 2005 12:56 pm www.fairchildsemi.com

August 1998

=AIRCHILD


Low Voltage 16-Bit Bidirectional Transceiver with 5V Tolerant Inputs/Outputs and 26 Ω Series Resistors in the Outputs

General Description

tional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment. The device is byte controlled. Each byte has separate control inputs which could be shorted together for full 16-bit operation. The T/Rinputs determine the direction of data flow through the device. The OE inputs disable both the A and B ports by placing them in a high impedance state.

(nominal) series resistors to reduce overshoot and undershoot and are designed to sink/source up to 12 mA at $V_{\rm CC} = 3.0 V.$

The LCXR162245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintain ing CMOS low power dissipation

Absolute Maximum Ratings(Note 3)

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +7.0		V	
VI	DC Input Voltage	-0.5 to +7.0		V	
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V	
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 4)	v	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA	
I _{OK}	DC Output Diode Current	-50	V _O < GND	0	
		+50	$V_{O} > V_{CC}$	mA	
lo	DC Output Source/Sink Current	±50		mA	
I _{CC}	DC Supply Current per Supply Pin	±100		mA	
I _{GND}	DC Ground Current per Ground Pin	±100		mA	
T _{STG}	Storage Temperature	-65 to +150		°C	

Recommended Operating Conditions (Note 5)

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		1.5	3.6	v	
VI	Input Voltage	A Star	0	5.5	V
V _O	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	V _{CC} = 3.0V - 3.6V		±12	
		V _{CC} = 2.7V - 3.0V		±8	mA
		V _{CC} = 2.3V - 2.7V		±4	
T _A	Free-Air Operating Temperature		-40	85	°C
∆t/∆V	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recom-mended Operating Conditions" table will define the conditions for actual device operation. Note 4: I_O Absolute Maximum Rating must be observed. Note 5: Unused pins (Inputs or I/O's) must be held HIGH or LOW. They may not Float. etv of the device cannot be ated

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc}	T _A = -40°C	to +85°C	Units
Gymbol		Conditions	(V)	Min	Max	
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		v
			2.7 - 3.6	2.0		v
VIL	LOW Level Input Voltage		2.3 – 2.7		0.7	v
			2.7 - 3.6		0.8	v
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	V _{CC} - 0.2		
		I _{OH} = -4 mA	2.3	1.8		
		I _{OH} = -4 mA	2.7	2.2		- V
		I _{OH} =6 mA	3.0	2.4		
		I _{OH} = -8 mA	2.7	2.0		
		I _{OH} = -12 mA	3.0	2.0		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 4 mA	2.3		0.6	
		I _{OL} = 4 mA	2.7		0.4	v
		$I_{OL} = 6 \text{ mA}$	3.0		0.55	v
		I _{OL} = 8 mA	2.7		0.6	
		I _{OL} = 12 mA	3.0		0.8	
l _l	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 - 3.6		±5.0	μΑ
I _{OZ}	3-STATE I/O Leakage	$0 \le V_O \le 5.5 V$	2.3 - 3.6		±5.0	
		$V_I = V_{IH}$ or V_{IL}				μA

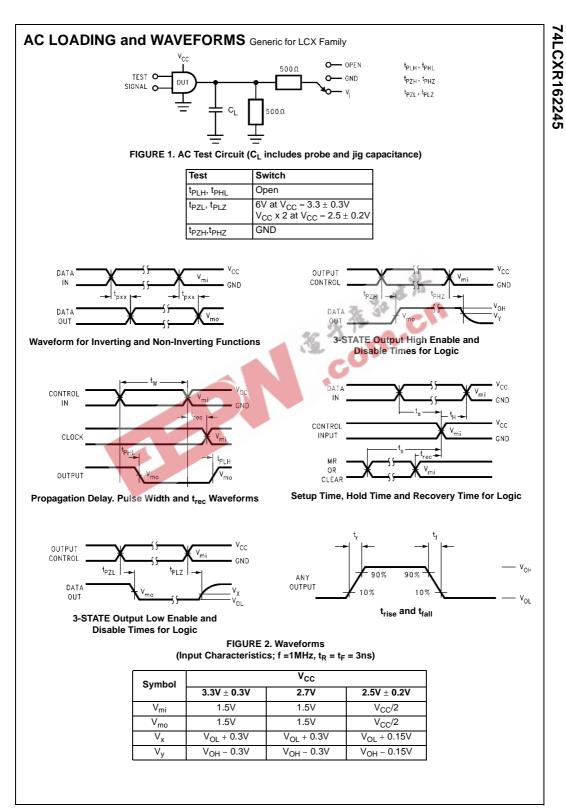
DC Electrical Characteristics (Continued)

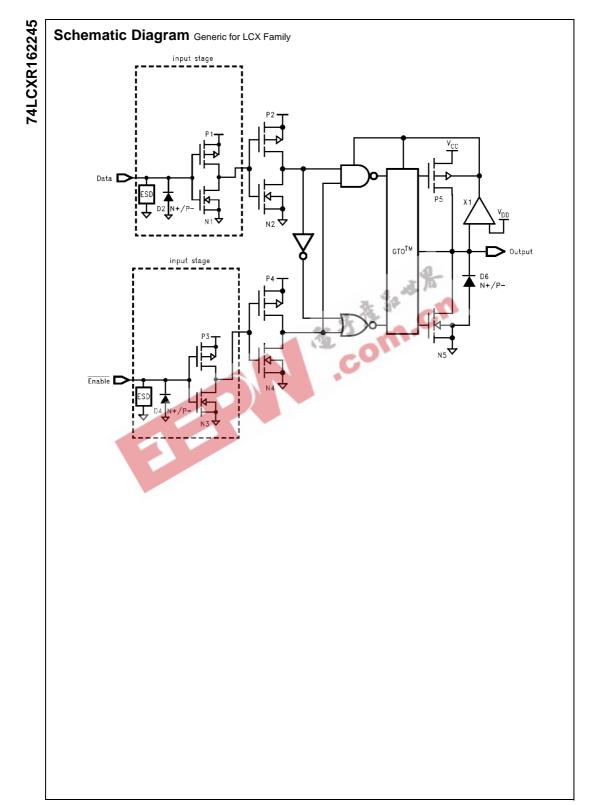
Symbol	Parameter	Conditions	V _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
		conditions	(V)	Min	Max	Units
I _{OFF}	Power-Off Leakage Current	$V_1 \text{ or } V_0 = 5.5 V$	0		10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 3.6		20	щA
		$3.6V \leq V_{I}, V_{O} \leq 5.5V$ (Note 6)	2.3 - 3.6		±20	μΛ
ΔI _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μA

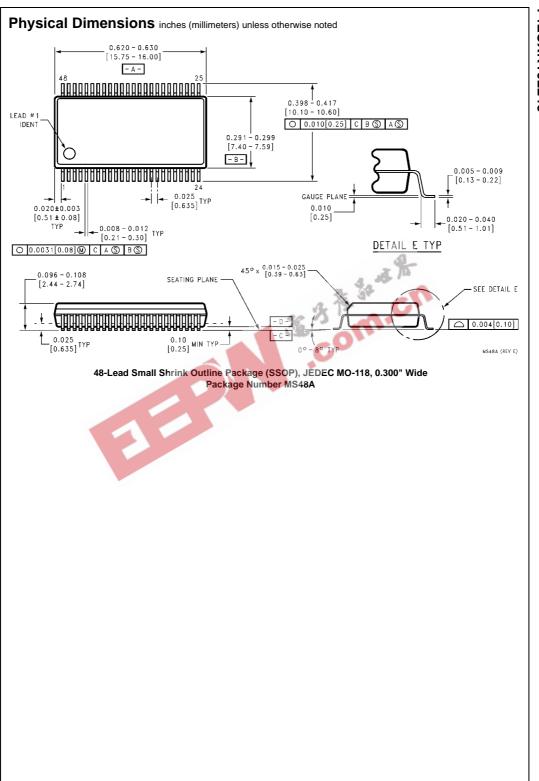
Note 6: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

		$\textbf{T}_{\textbf{A}}=-\textbf{40}^{\circ}\textbf{C}$ to $+\textbf{85}^{\circ}\textbf{C},\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$						
Symbol	Barrantar	V _{CC} = 3.	$3V \pm 0.3V$	V _{CC} =	2.7V	V _{CC} = 2	.5V ± 0.2	Units
	Parameter	C _L = 50 pF		C _L = 50 pF		C _L = 30 pF		Units
		Min	Max	Min	Max	Min	Max	1
t _{PHL}	Propagation Delay	1.5	5.3	1.5	6.0	1.5	6.4	ns
t _{PLH}	A _n to B _n or B _n to A _n	1.5	5.3	1.5	6.0	1.5	6.4	
t _{PZL}	Output Enable Time	1.5	7.3	1.5	8.0	1.5	9.5	20
t _{PZH}		1.5	7.3	1.5	8.0	1.5	9.5	ns
t _{PLZ}	Output Disable Time	1.5	6.4	1.5	6.9	1.5	7.7	ns
t _{PHZ}		1.5	6.4	1.5	6.9	1.5	7.7	
t _{OSHL}	Output to Output Skew (Note 7)		1.0					ns
t _{OSLH}			1.0					113

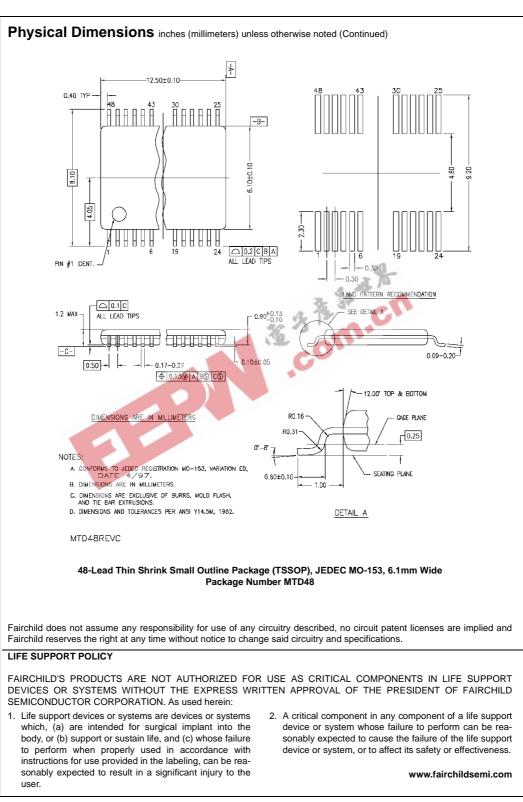

Note 7: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tosHL) or LOW-to-HIGH (tosLH). Parameter guaranteed by design.


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V_{CC} $T_A = 25^{\circ}C$		Units
			(V)	Typical	
VOLP	Quiet Output Dynamic Peak VOL	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.35	V
		$C_L=30\ pF,\ V_{IH}=2.5V,\ V_{IL}=0V$	2.5	0.25	v
V _{OLV}	Quiet Output Dynamic Valley VOL	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.35	V
		$C_L = 30 \; pF, \; V_{IH} = 2.5V, \; V_{IL} = 0V$	2.5	-0.25	v

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V, V_I = 0V \text{ or } V_{CC}$	8	pF
C _{PD}	Power Dissipation Capacitance	V_{CC} = 3.3V, V_{I} = 0V or V_{CC},f = 10 MHz	20	pF



74LCXR162245

74LCXR162245 Low Voltage 16-Bit Bidirectional Transceiver with 5V Tolerant Inputs/Outputs and 26 Ω Series

Resistors in the Outputs

