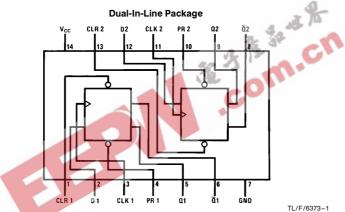


54LS74/DM54LS74A/DM74LS74A Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary Outputs

General Description


This device contains two independent positive-edge-triggered D flip-flops with complementary outputs. The information on the D input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D input may be changed while the clock is low or high without affecting the outputs as long as the data setup and hold times are not

violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Features

 Alternate military/aerospace device (54LS74) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

Connection Diagram

Order Number 54LS74DMQB, 54LS74FMQB, 54LS74LMQB, DM54LS74AJ, DM54LS74AW, DM74LS74AM or DM74LS74AN See NS Package Number E20A, J14A, M14A, N14A or W14B

Function Table

	Inpu	Outputs			
PR	CLR	CLK	D	Q	Q
L	Н	Х	Х	Н	L
Н	L	Х	X	L	Н
L	L	Х	X	H*	H*
Н	Н	1	Н	Н	L
Н	Н	1	L	L	Н
Н	Н	L	X	Q_0	\overline{Q}_0

H = High Logic Level

X = Either Low or High Logic Level

L = Low Logic Level

1 = Positive-going Transition

 This configuration is nonstable; that is, it will not persist when either the preset and/or clear inputs return to their inactive (high) level.

Q₀ = The output logic level of Q before the indicated input conditions were established.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Input Voltage 7V Operating Free Air Temperature Range

DM54LS and 54LS

 -55°C to $+125^{\circ}\text{C}$ 0° C to $+70^{\circ}$ C DM74LS

-65°C to +150°C Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter -		DM54LS74A			DM74LS74A			Units
Symbol			Min	Nom	Max	Min	Nom	Max	Omits
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	٧
V_{IH}	High Level Input Voltage		2			2			٧
V _{IL}	Low Level Input Voltage				0.7			0.8	٧
Гон	High Level Output Current				-0.4			-0.4	mA
I _{OL}	Low Level Output Current				4		ق ا	8	mA
f _{CLK}	Clock Frequency (Note 2)		0		25	0	追馬	25	MHz
f _{CLK}	Clock Frequency (Note 3)		0		20	0	4	20	MHz
t _W Pulse Wi (Note 2)	Pulse Width	Clock High	18		V	18	_ C		
	(Note 2)	Preset Low	15		3.5	15	Ls.		ns
		Clear Low	15			15			
	Pulse Width	Clock High	25			25			
	(Note 3)	Preset Low	20		B	20			ns
		Clear Low	20			20			
t _{SU}	Setup Time (Notes 1 and 2)		20 ↑			20↑			ns
t _{SU}	Setup Time (Notes 1 and 3)		25 ↑			25 ↑			ns
t _H	Hold Time (Note 1 and 4)		0 ↑			0 ↑			ns
T _A	Free Air Operating Temperature		-55		125	0		70	°C

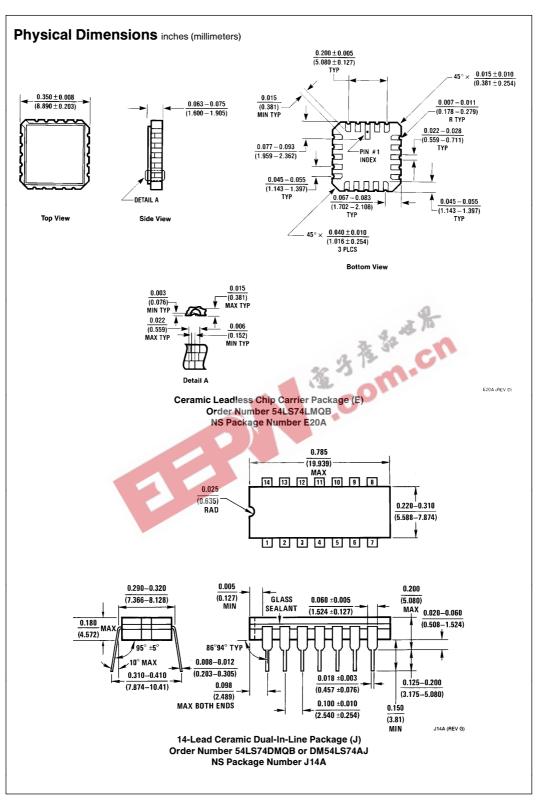
Note 1: The symbol (↑) indicates the rising edge of the clock pulse is used for reference.

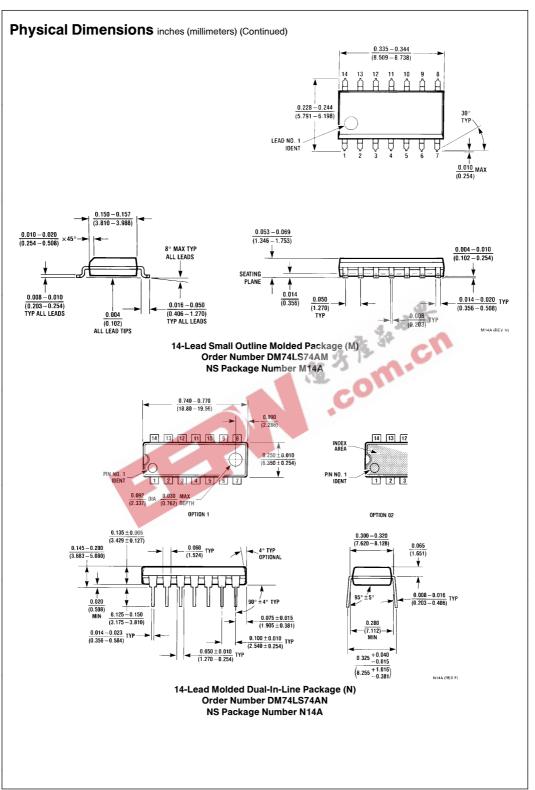
Note 2: $C_L=15$ pF, $R_L=2$ k Ω , $T_A=25$ °C, and $V_{CC}=5$ V.

Note 3: $C_L = 50$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C, and $V_{CC} = 5$ V.

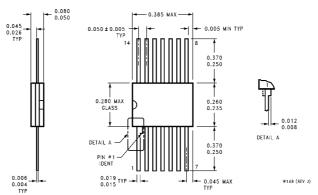
Note 4: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			−1.5	V	
OH High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V	
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.4		٧
V _{OL} Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$	DM54		0.25	0.4	V	
	$V_{IL} = Max, V_{IH} = Min$	DM74		0.35	0.5		
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74		0.25	0.4	
Input Current @Max Input Voltage	Input Current @Max	nt @Max V _{CC} = Max	Data			0.1	
	$V_I = 7V$	Clock			0.1	mA	
		Preset			0.2		
		Clear			0.2		
High Level Input	High Level Input	$V_{CC} = Max$ $V_{I} = 2.7V$	Data			20	μΑ
	Current		Clock			20	
		Clear			40	μ, τ	
		Preset		43	40		
I _{IL} Low Level Input Current	Low Level Input	V _{CC} = Max	Data		N W	-0.4	
	$V_I = 0.4V$	Clock	3 3º	2	-0.4	mA	
			Preset	73		-0.8] ""\
			Clear	-01		-0.8	
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	- mA
	Output Current	(Note 2)	DM74	-20		-100	
lcc	Supply Current	V _{CC} = Max (Note 3)			4	8	mA


Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.


Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $V_C = 2.25V$ and 2.125V for DM54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test

 $\textbf{Note 3:} \ \ \textbf{With all outputs open, } \ \textbf{I}_{\overline{QC}} \ \ \textbf{is measured with CLOCK} \ \ \textbf{grounded after setting the Q and } \ \overline{Q} \ \ \textbf{outputs high in turn.}$


Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

Parameter Maximum Clock Frequency	From (Input) To (Output)	C _L =	15 pF Max		50 pF	Units
Maximum Clock Frequency		Min	Max	M:		
Maximum Clock Frequency			ax	Min	Max	
		25		20		MHz
Propagation Delay Time Low to High Level Output	Clock to Q or \overline{Q}		25		35	ns
Propagation Delay Time High to Low Level Output	Clock to Q or \overline{Q}		30		35	ns
Propagation Delay Time Low to High Level Output	Preset to Q		25		35	ns
Propagation Delay Time High to Low Level Output	Preset to $\overline{\mathbf{Q}}$		30		35	ns
Propagation Delay Time Low to High Level Output	Clear to $\overline{\mathbf{Q}}$		25		35	ns
Propagation Delay Time High to Low Level Output	Clear to Q		30		35	ns
	Low to High Level Output Propagation Delay Time High to Low Level Output Propagation Delay Time Low to High Level Output Propagation Delay Time High to Low Level Output Propagation Delay Time Low to High Level Output Propagation Delay Time Low to High Level Output Propagation Delay Time	Low to High Level Output Q or Q Propagation Delay Time Clock to High to Low Level Output Q or Q Propagation Delay Time Preset Low to High Level Output to Q Propagation Delay Time Preset High to Low Level Output to Q Propagation Delay Time Clear Low to High Level Output to Q Propagation Delay Time Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear	Low to High Level Output Q or Q Propagation Delay Time Clock to High to Low Level Output Q or Q Propagation Delay Time Preset Low to High Level Output to Q Propagation Delay Time Preset High to Low Level Output to Q Propagation Delay Time Clear Low to High Level Output to Q Propagation Delay Time Clear Low to Delay Time Clear Clear Clear Clear Clear Clear Clear	Low to High Level Output Q or Q 25 Propagation Delay Time Clock to 30 High to Low Level Output Preset 25 Propagation Delay Time Preset 30 Low to High Level Output to Q 25 Propagation Delay Time Preset 30 High to Low Level Output to Q 30 Propagation Delay Time Clear 25 Low to High Level Output to Q 25 Propagation Delay Time Clear 25 Propagation Delay Time Clear 30	Low to High Level Output Q or Q 25 Propagation Delay Time Clock to Q or Q 30 Propagation Delay Time Preset to Q 25 Low to High Level Output Preset to Q 30 Propagation Delay Time Preset to Q 30 High to Low Level Output Preset to Q 30 Propagation Delay Time Clear 25 Low to High Level Output to Q 25 Propagation Delay Time Clear 25 Propagation Delay Time Clear 30	Low to High Level Output Q or Q 25 35 Propagation Delay Time High to Low Level Output Clock to Q or Q 30 35 Propagation Delay Time Low to High Level Output Preset to Q 25 35 Propagation Delay Time High to Low Level Output Preset to Q 30 35 Propagation Delay Time Low to High Level Output Clear to Q 25 35 Propagation Delay Time Low to High Level Output Clear to Q 25 35 Propagation Delay Time Clear 25 35 Propagation Delay Time Clear 30 35

Physical Dimensions inches (millimeters) (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS74FMQB or DM54LS74AW NS Package Number W14B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Europe Fax: (+49) 0-180-530 85 86
Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85
English Tel: (+49) 0-180-532 78 32
Français Tel: (+49) 0-180-532 33 18
Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton F Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor