INTEGRATED CIRCUITS

DATA SHEET

74LVC14A

Hex inverting Schmitt-trigger with 5V tolerant input

Product specification

1998 Apr 28

DESCRIPTION

environment.

compatible TTL families.

Hex inverting Schmitt-trigger with 5V tolerant input

74LVC14A

FEATURES

- Wide supply voltage range of: 1.2 V to 3.6 V
- In accordance with JEDEC standard no. 8-1A
- Inputs accept voltages up to 5.5 V
- CMOS low power consumption
- Direct interface with TTL levels

APPLICATIONS

- Wave and pulse shapers for highly noisy environments
- Astable multivibrators
- Monostable multivibrators

QUICK REFERENCE DATA GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r \le t_f \le 2.5 \text{ ns}$

action. It is capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

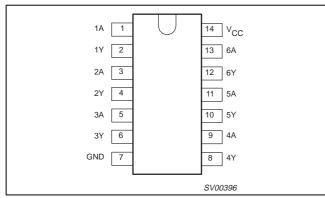
The 74LVC14A is a high-performance, low power, low-voltage

Si-gate CMOS device and superior to most advanced CMOS

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in a mixed 3.3 V/5 V

The 74LVC14A provides six inverting buffers with Schmitt-trigger

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay nA to nY	$C_L = 50 \text{ pF};$ $V_{CC} = 3.3 \text{ V}$	4	ns
C _I	Input capacitance	CO.	3.5	pF
C _{PD}	Power dissipation capacitance per gate	Notes 1 and 2	25	pF

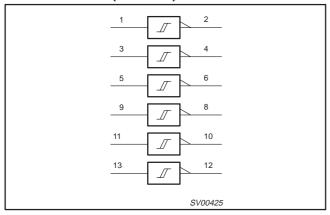

NOTES:

- 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW)
 - $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:
- 2. The condition is $V_I = GND$ to V_{CC}

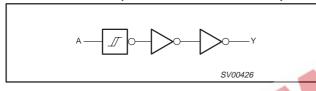
ORDERING INFORMATION

				_
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
14-Pin Plastic SO	-40°C to +85°C	74LVC14A D	74LVC14A D	SOT108-1
14-Pin Plastic SSOP Type II	-40°C to +85°C	74LVC14A DB	74LVC14A DB	SOT337-1
14-Pin Plastic TSSOP Type I	-40°C to +85°C	74LVC14A PW	74LVC14APW DH	SOT402-1

PIN CONFIGURATION


PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 3, 5, 9, 11, 13	1A – 6A	Data inputs
2, 4, 6, 8, 10, 12	1Y – 6Y	Data outputs
7	GND	Ground (0 V)
14	V _{CC}	Positive supply voltage


Hex inverting Schmitt-trigger with 5V tolerant input

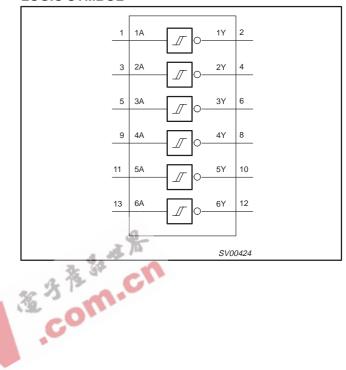
74LVC14A

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM (ONE SCHMITT-TRIGGER)

FUNCTION TABLE

INPUT	OUTPUT
nA	nY
L	Н
н	L


NOTES:

H = HIGH voltage level L = LOW voltage level

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	UNIT	
STWIBUL	PARAMETER	CONDITIONS	MIN	MAX	UNII
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DC supply voltage (for max. speed performance)		2.7	3.6	V
V _{CC}	DC supply voltage (for low-voltage applications)		1.2	3.6	V
VI	DC input voltage range		0	5.5	V
V.,,	DC output voltage range; output HIGH or LOW state		0	V _{CC}	V
V _{I/O}	DC input voltage range; output 3-State		0	5.5	V
T _{amb}	Operating free-air temperature range		-40	+85	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 1.2 \text{ to } 2.7V$ $V_{CC} = 2.7 \text{ to } 3.6V$	0	20 10	ns/V

LOGIC SYMBOL

Hex inverting Schmitt-trigger with 5V tolerant input

74LVC14A

ABSOLUTE MAXIMUM RATINGS¹

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +6.5	V
I _{IK}	DC input diode current	$V_{I} < 0$	-50	mA
VI	DC input voltage	Note 2	-0.5 to +6.5	V
I _{OK}	DC output diode current	$V_{O} > V_{CC}$ or $V_{O} < 0$	±50	mA
\/	DC output voltage; output HIGH or LOW	Note 2	-0.5 to V _{CC} +0.5	V
V _{I/O}	DC input voltage; output 3-State	Note 2	-0.5 to 6.5	V
I _O	DC output source or sink current	$V_O = 0$ to V_{CC}	±50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-65 to +150	°C
	Power dissipation per package	2_		
P_{TOT}	– plastic mini-pack (SO)	above +70°C derate linearly with 8 mW/K	500	
	- plastic shrink mini-pack (SSOP and TSSOP)	above +60°C derate linearly with 5.5 mW/K	500	mW

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0V).

			L						
SYMBOL	PARAMETER	TEST CONDITIONS	Temp = -	+85°C	UNIT				
			MIN	TYP ¹	MAX				
V	HIGH level Input voltage	V _{CC} = 1.2V	V _{CC}			V			
V _{IH}	nion level input voltage	V _{CC} = 2.7 to 3.6V	2.0			l v			
V	LOW lovel langt valtage	V _{CC} = 1.2V			GND	V			
V _{IL}	LOW level Input voltage	V _{CC} = 2.7 to 3.6V			0.8	V			
		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12$ mA	V _{CC} - 0.5						
	HIGH level output voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -100 \mu A$	V _{CC} - 0.2	V _{CC}					
V _{OH}	nigh level output voltage	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -18$ mA	V _{CC} - 0.6]			
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -24$ mA	V _{CC} - 0.8						
		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12$ mA			0.40				
V _{OL}	LOW level output voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		GND	0.20	V			
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 24$ mA			0.55				
I _I	Input leakage current	$V_{CC} = 3.6V$; $V_I = 5.5V$ or GND		±0.1	±5	μΑ			
I _{CC}	Quiescent supply current	$V_{CC} = 3.6V$; $V_I = V_{CC}$ or GND; $I_O = 0$		0.1	10	μΑ			
Δl _{CC}	Additional quiescent supply current per input pin	al quiescent supply current Voc = 2.3V to 3.6V: V ₁ = Voc = 0.6V: Io = 0							

1998 Apr 28

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{1.} All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

Hex inverting Schmitt-trigger with 5V tolerant input

74LVC14A

TRANSFER CHARACTERISTICS

Voltages are referenced to GND (ground = 0 V).

			T _{amb} (°C)				TEST CONDITIONS
SYMBOL	PARAMETER		-40 TO +85		UNIT	V _{CC}	WAVEFORMS
		MIN	TYP ¹	MAX	1	V _{CC} (V)	WAVEFORMS
		-	-	1.2		1.2	
V _{T+}	Positive-going threshold	1.1	-	2.0	V	2.7	Figures 1 and 2
	i i i oonola	1.1	-	2.0		2.7 to 3.6	
		0	-			1.2	
V _T	Negative-going threshold	0.8	-	1.5	V	2.7	Figures 1 and 2
	i i i donoid	0.8	-	1.5		2.7 to 3.6	
		-	-	-		1.2	
V _H	Hysteresis $(V_{T+} - V_{T-})$ 0.3 0.4 -		V	2.7	Figures 1, 2 and 3		
	(0.3	0.45*	-		2.7 to 3.6	

NOTES:

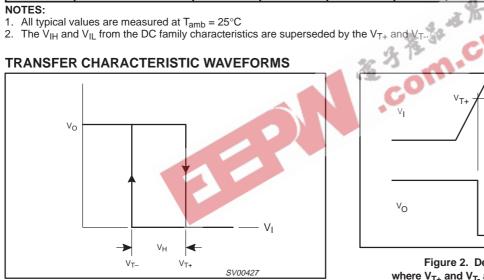


Figure 1. Transfer characteristic.

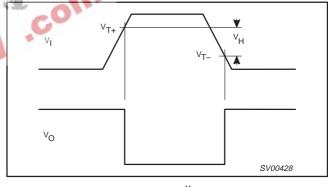


Figure 2. Definition of $\,^{V}_{T^{\,+}},\,V_{T^{\!-}}$ and $V_{H};$ where V_{T+} and V_{T-} are between limits of 20% and 70%

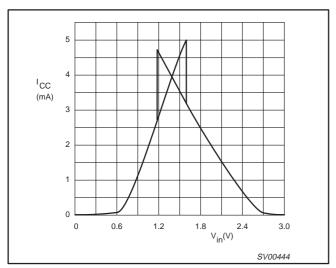


Figure 3. Typical 74LVC14 transfer characteristics; $V_{CC} = 3.3 \text{ V}$.

1998 Apr 28 5

Hex inverting Schmitt-trigger with 5V tolerant input

74LVC14A

AC CHARACTERISTICS

GND = 0 V; t_r = $t_f \leq$ 2.5 ns; C_L = 50 pF; R_L = 500 Ω ; T_{amb} = -40°C to +85°C

				LIMITS								
SYMBOL	PARAMETER	WAVEFORM	Vcc	= 3.3V ±0).3V	\	/ _{CC} = 2.7\	/	V _{CC} = 1.2V	UNIT		
			MIN	TYP ¹	MAX	MIN	TYP	MAX	TYP			
t _{PHL} / t _{PLH}	Propagation delay nA to nY	Figure 1, 2	1.5	4.5	6.4	1.5	5.0	7.5	18	ns		

NOTE:

1. These typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

AC WAVEFORMS

 V_{M} = 1.5 V at $V_{CC} \ge 2.7$ V

 $V_{M} = 0.5 \bullet V_{CC}$ at $V_{CC} < 2.7 V$

 V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

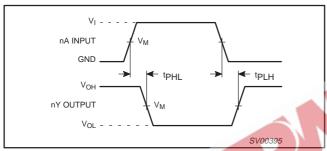


Figure 1. Input (nA) to output (nY) propagation delays.

TEST CIRCUIT

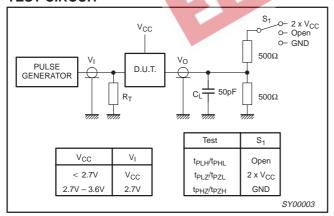


Figure 2. Load circuitry for switching times.

APPLICATION INFORMATION

All values given are typical unless otherwise specified.

Note to Figure 7:
$$f = \frac{1}{T} \approx \frac{1}{0.8 \times RC}$$

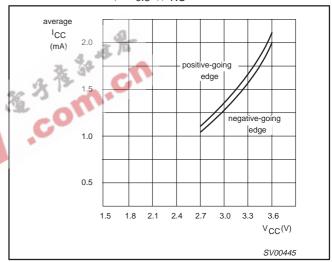
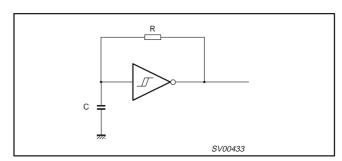
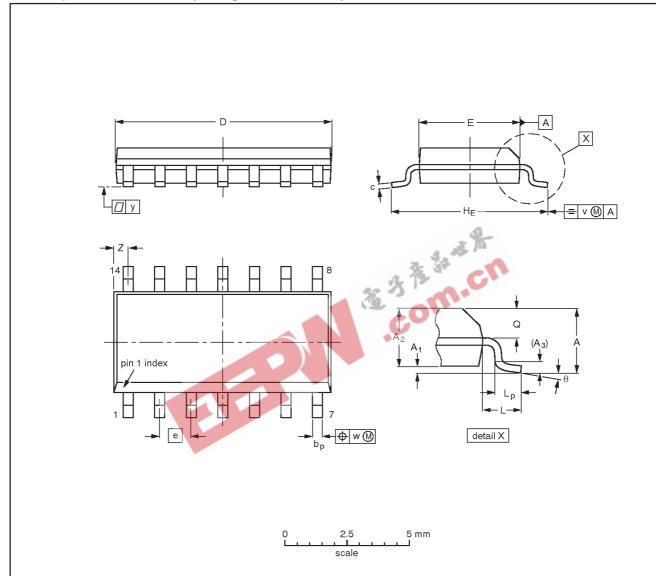


Figure 3. Average I_{CC} for LVC Schmitt-trigger devices; linear change of V_i between 0.8 V to 2.0 V.




Figure 4. Relaxation oscillator using the LVC14.

Hex inverting Schmitt-trigger with 5V tolerant input

74LVC14A

SO14: plastic small outline package; 14 leads; body width 3.9 mm

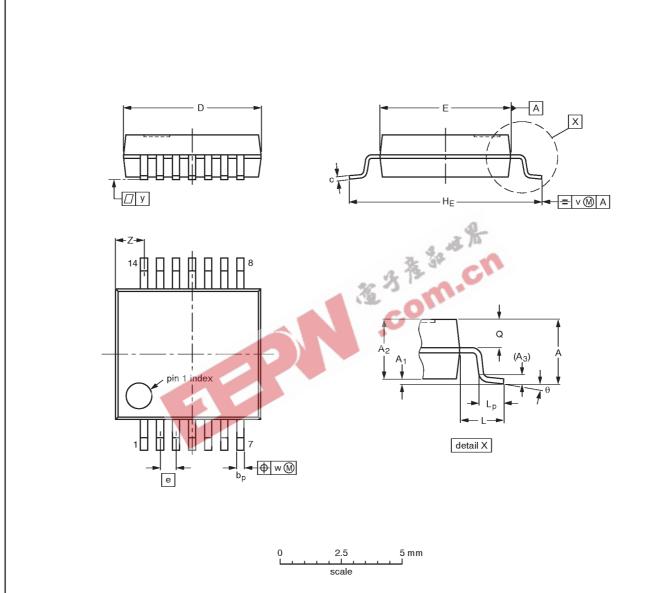
SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.35 0.34	0.16 0.15	0.050	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.


OUTLINE	VERSION IEC JEDEC	RENCES	EUROPEAN	ISSUE DATE		
VERSION	N IEC JEDEC		EIAJ	PROJECTION	ISSUE DATE	
SOT108-1	076E06S	MS-012AB			95-01-23 97-05-22	

Hex inverting Schmitt-trigger with 5V tolerant input

74LVC14A

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

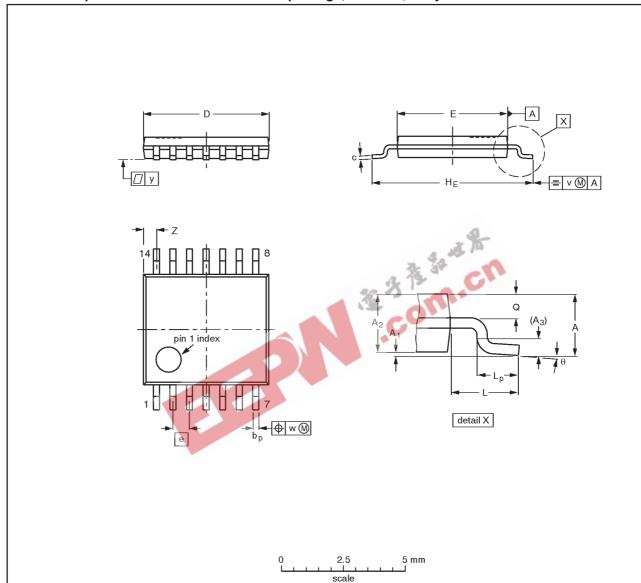
SOT337-1

DIMENSIONS (mm are the original dimensions)

						-,												
UNIT	A max.	Α ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUEDATE
SOT337-1		MO-150AB				-95-02-04 96-01-18

Hex inverting Schmitt-trigger with 5V tolerant input

74LVC14A

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	Α1	A ₂	А3	рb	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT402-1		MO-153			94-07-12 95-04-04

Hex inverting Schmitt-trigger with 5V tolerant input

74LVC14A

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 07-98

Document order number: 9397-750-04484

Let's make things better.

