FAIRCHILD

SEMICONDUCTOR

74LCXZ245 Low Voltage Bidirectional Transceiver with 5V Tolerant Inputs and Outputs

General Description

The 74LCXZ245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V and 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment. The T/\overline{R} input determines the direction of data flow through the device. The OE input disables both the A and B ports by placing them in a high impedance state.

The 74LCXZ245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation. When $V_{\mbox{CC}}$ is between 0Vand 1.5V, the 74LCXZ245 is on the high impedance state during power up or power down. This places the outputs in the high impedance (Z) state preventing intermittent low impedance loading or glitching in bus oriented applications

Features

■ 5V tolerant inputs and outputs

- 2.3V–3.6V V_{CC} specifications provided
- \blacksquare 7.0 ns t_{PD} max (V_{CC} = 3.3V), 10 $\mu A \mid_{CC} max$
- Power down high impedance inputs and outputs

October 2000

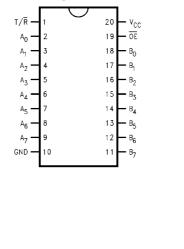
Revised October 2000

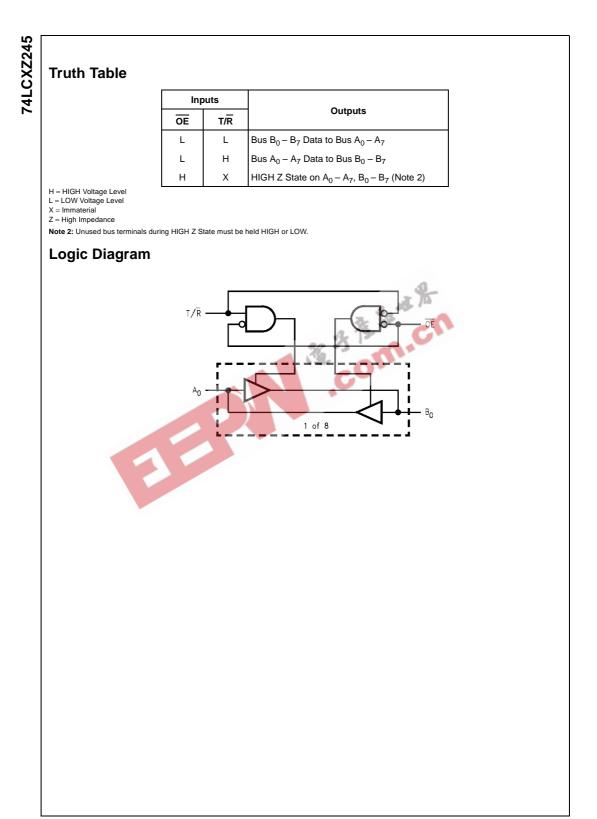
- Supports live insertion/withdrawal (Note 1)
- ±24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:
 - Human body model > 2000V Machine model > 200V

Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCXZ245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCXZ245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCXZ245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LCXZ245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.


Logic Symbol


Pin Descriptions

Pin Names	Description
OE	Output Enable Input
T/R	Transmit/Receive Input
A ₀ -A ₇	Side A Inputs or 3-STATE Outputs
B ₀ -B ₇	Side B Inputs or 3-STATE Outputs

Connection Diagram

© 2000 Fairchild Semiconductor Corporation DS500362

Absolute Maximum Ratings(Note 3)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to $V_{CC} + 0.5$	Output in HIGH or LOW State (Note 4)	v
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_{O} > V_{CC}$	mA
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 5)

Symbol	Parameter			Max	Units
V _{CC}	Supply Voltage Operating			3.6	V
VI	Input Voltage	4,00	0	5.5	V
V _O	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V - 3.0V$		±24	
		V _{CC} = 2.7V - 3.0V		±12	mA
		V _{CC} = 2.3V - 2.7V		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V - 2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation. Note 4: I₀ Absolute Maximum Rating must be observed. Note 5: Unused inputs or I/O pins must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	
Symbol	Farameter	Conditions	(V)	Min	Max	Units	
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		v	
			2.7 – 3.6	2.0		v	
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V	
			2.7 - 3.6		0.8	v	
V _{ОН}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	V _{CC} - 0.2			
		I _{OH} = -8 mA	2.3	1.8			
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V	
		I _{OH} = -18 mA	3.0	2.4			
		I _{OH} = -24 mA	3.0	2.2			
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2		
		I _{OL} = 8mA	2.3		0.6		
		I _{OL} = 12 mA	2.7		0.4	V	
		I _{OL} = 16 mA	3.0		0.4		
		I _{OL} = 24 mA	3.0		0.55		
l _l	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 - 3.6		±5.0	μΑ	
I _{OZ}	3-STATE I/O Leakage	$0 \le V_O \le 5.5V$	2.3 – 3.6		±5.0	μA	
		$V_I = V_{IH}$ or V_{IL}	2.0 - 5.0		10.0	μΑ	
I _{OFF}	Power-Off Leakage Current	$V_1 \text{ or } V_0 = 5.5 V$	0		10	μΑ	
I _{PU/PD}	Power Up/ Power Down	$V_O = to V_{CC}$	0 – 1.5		±5.0		
	3-STATE Output Current	$V_I = V_{CC}$ or GND	0 - 1.5	±5.0	μA		

74LCXZ245

74LCX2245

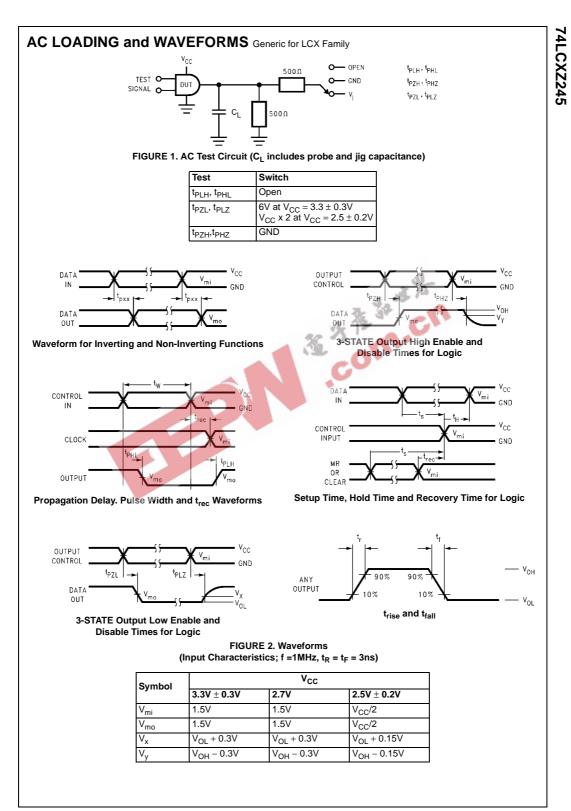
DC Electrical Characteristics (Continued)

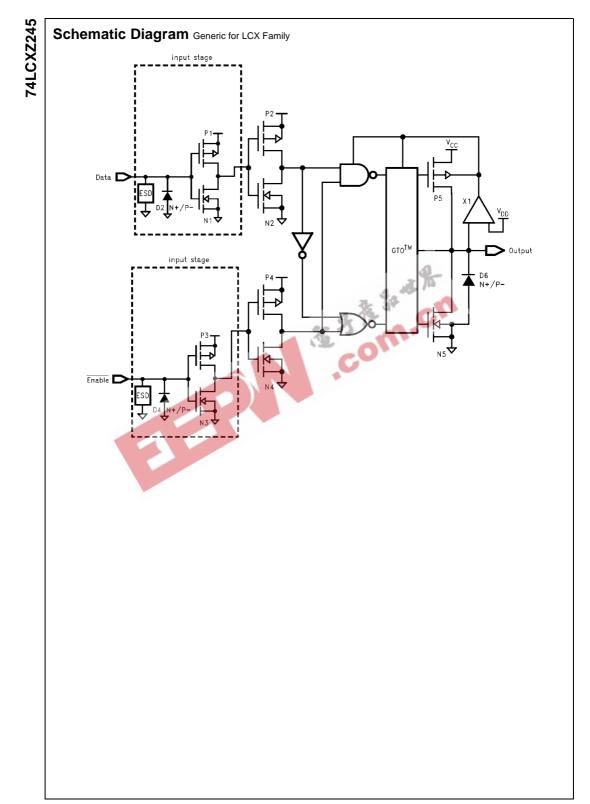
Symbol	Parameter	Conditions	v _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
		Conditions	(V)	Min	Max	onits
Icc	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 3.6		225	
		$3.6V \le V_I, V_O \le 5.5V$ (Note 6)	2.3 - 3.6		±225	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μΑ
Note 6: Out	puts disabled or 3-STATE only.					

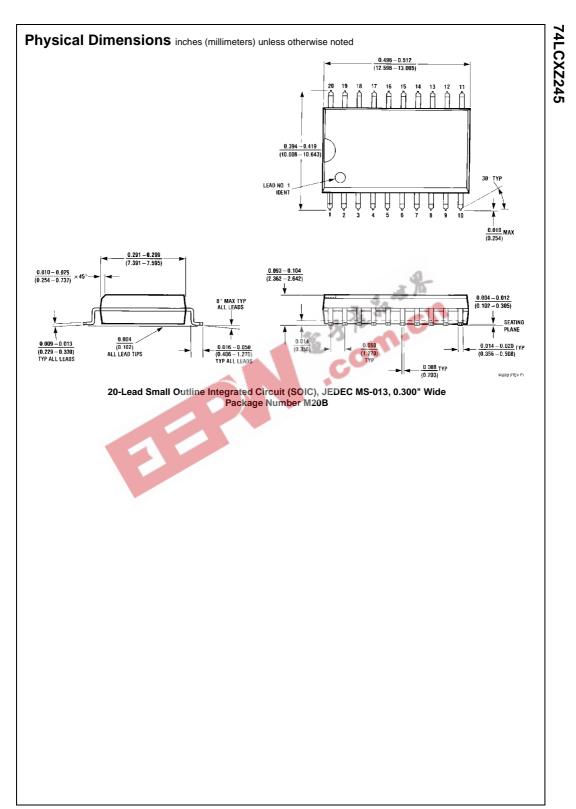
AC Electrical Characteristics

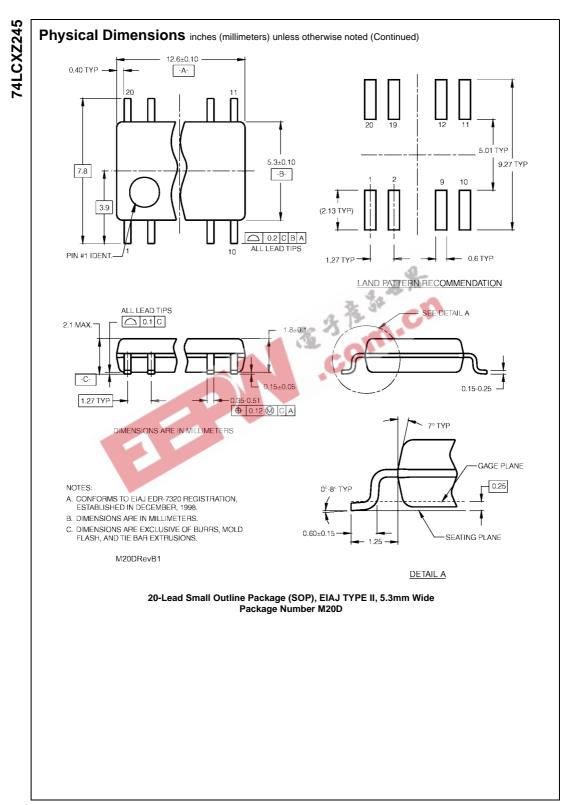
		T _A	$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$			
	Devenuedor	V _{CC} = 3.	$V_{CC}=3.3V\pm0.3V$		$V_{CC} = 2.7V$	
Symbol	Parameter		C _L = 50 pF		C _L = 50 pF	
		Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.5	7.0	1.5	8.0	ns
t _{PLH}	A _n to B _n or B _n to A _n	1.5	7.0	1.5	8.0	
t _{PZL}	Output Enable Time	1.5	8.5	1.5	9.5	
t _{PZH}		1.5	8.5	1.5	9.5	ns
t _{PLZ}	Output Disable Time	1.5	7.5	1.5	8.5	ns
t _{PHZ}		1.5	7.5	1.5	8.5	
t _{OSHL}	Output to Output Skew	4.72	1.0			
t _{OSLH}	(Note 7)	2	1.0			ns

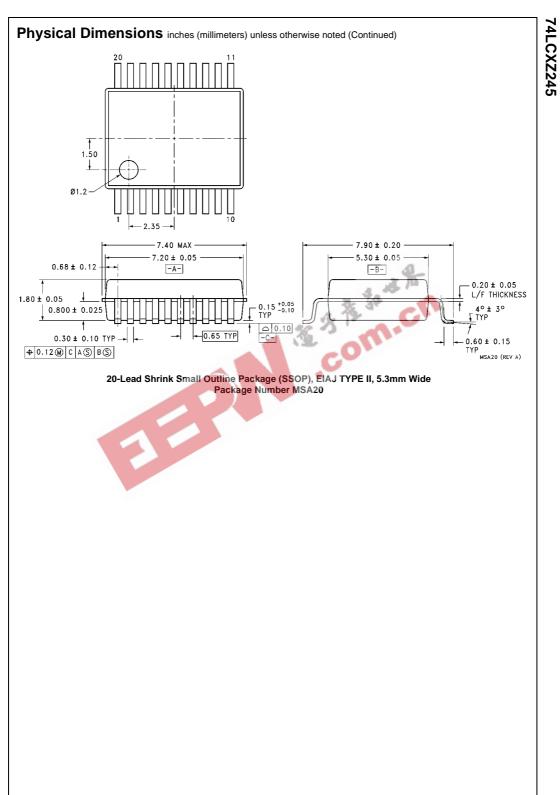
Note 7: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (togsit) or LOW-to-HIGH (togsit).


.


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$	Units
Symbol		Conditions	(V)	Typical	
V _{OLP}	Quiet Output Dynamic Peak VOL	$C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.6	v


Capacitance


Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , f = 10 MHz	25	pF

