### FAIRCHILD

SEMICONDUCTOR

74LCXH162374

February 2001 Revised October 2001

## Low Voltage 16-Bit D-Type Flip-Flop with Bushold and 26 $\Omega$ Series Resistors in Outputs

#### **General Description**

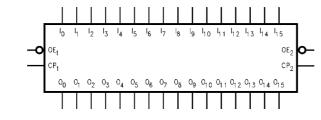
The LCXH162374 contains sixteen non-inverting D-type flip-flops with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable ( $\overline{OE}$ ) are common to each byte and can be shorted together for full 16-bit operation.

The LCXH162374 is designed for low voltage (2.5V or 3.3V)  $V_{CC}$  applications. The LCXH162374 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level. The  $26\Omega$  series resistor in the output helps reduce output overshoot and undershoot.

The LCXH162374 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

#### Features

- 5V tolerant control inputs and outputs
- 2.3V–3.6V V<sub>CC</sub> specifications provided
- $\blacksquare$  7.0 ns t<sub>PD</sub> max (V<sub>CC</sub> = 3.3V), 20  $\mu$ A I<sub>CC</sub> max
- Power down high impedance inputs and outputs
- ±12 mA output drive ( $V_{CC} = 3.0V$ )
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance: Human body model > 2000V
- Machine model > 200V
- Equivalent 26Ω series resistors on output
- Bushold on inputs eliminates the need for external pull-up/pull-down resistors
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA) (Preliminary)


#### **Ordering Code:**

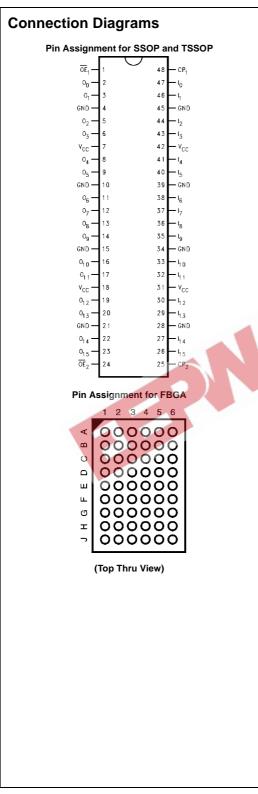
| Order Number                | Package<br>Number       | Package Description                                                                            |
|-----------------------------|-------------------------|------------------------------------------------------------------------------------------------|
| 74LCXH162374GX<br>(Note 1)  | BGA54A<br>(Preliminary) | 54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide<br>[TAPE and REEL]         |
| 74LCXH162374MEA             | MS48A                   | 48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide<br>[TUBES]              |
| 74LCXH162374MEX<br>(Note 2) | MS48A                   | 48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide<br>[TAPE and REEL]      |
| 74LCXH162374MTD             | MTD48                   | 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [TUBES]            |
| 74LCXH162374MTX<br>(Note 2) | MTD48                   | 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide<br>[TAPE and REEL] |

Note 1: BGA package available in Tape and Reel only.

Note 2: Use this order number to receive devices in Tape and Reel.

#### Logic Symbol




GTO<sup>™</sup> is a trademark of Fairchild Semiconductor Corporation.

© 2001 Fairchild Semiconductor Corporation DS500446

www.fairchildsemi.com

'4LCXH162374 Low Voltage 16-Bit D-Type Flip-Flop with Bushold and 26 $\Omega$  Series Resistors in Outputs

74LCXH162374



#### **Pin Descriptions**

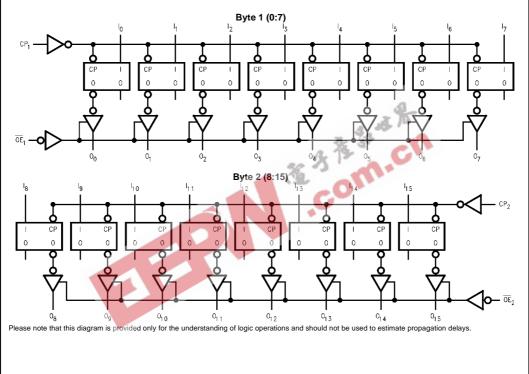
| Pin Names                                                          | Description                      |
|--------------------------------------------------------------------|----------------------------------|
| <del>OE</del> n                                                    | Output Enable Input (Active LOW) |
| CPn                                                                | Clock Pulse Input                |
| I <sub>0</sub> -I <sub>15</sub>                                    | Inputs (Bushold)                 |
| I <sub>0</sub> –I <sub>15</sub><br>O <sub>0</sub> –O <sub>15</sub> | Outputs                          |
| NC                                                                 | No Connect                       |

#### **FBGA Pin Assignments**

|     | 1               | 2                     | 3               | 4               | 5               | 6               |
|-----|-----------------|-----------------------|-----------------|-----------------|-----------------|-----------------|
| Α   | O <sub>0</sub>  | NC                    | OE <sub>1</sub> | CP <sub>1</sub> | NC              | I <sub>0</sub>  |
| В   | 0 <sub>2</sub>  | 01                    | NC              | NC              | I <sub>1</sub>  | l <sub>2</sub>  |
| С   | 0 <sub>4</sub>  | O <sub>3</sub>        | V <sub>CC</sub> | V <sub>CC</sub> | I <sub>3</sub>  | $I_4$           |
| D   | O <sub>6</sub>  | <b>O</b> <sub>5</sub> | GND             | GND             | I <sub>5</sub>  | $I_6$           |
| E   | 0 <sub>8</sub>  | O <sub>7</sub>        | GND             | GND             | ۱ <sub>7</sub>  | l <sub>8</sub>  |
| F   | O <sub>10</sub> | 0 <sub>9</sub>        | GND             | GND             | l <sub>9</sub>  | I <sub>10</sub> |
| G   | 0 <sub>12</sub> | O <sub>11</sub>       | Vcc             | V <sub>CC</sub> | I <sub>11</sub> | I <sub>12</sub> |
| H   | O <sub>14</sub> | O <sub>13</sub>       | NC              | NC              | I <sub>13</sub> | I <sub>14</sub> |
| C J | 0 <sub>15</sub> | NC                    | OE <sub>2</sub> | CP <sub>2</sub> | NC              | I <sub>15</sub> |

#### **Truth Tables**

|                 | Inputs          |                                 | Outputs                         |
|-----------------|-----------------|---------------------------------|---------------------------------|
| CP <sub>1</sub> | OE <sub>1</sub> | I <sub>0</sub> –I <sub>7</sub>  | 0 <sub>0</sub> -0 <sub>7</sub>  |
| ~               | L               | Н                               | н                               |
| ~               | L               | L                               | L                               |
| L               | L               | Х                               | O <sub>0</sub>                  |
| Х               | Н               | Х                               | Z                               |
|                 | Inputs          |                                 | Outputs                         |
| CP2             | 0E2             | I <sub>8</sub> –I <sub>15</sub> | 0 <sub>8</sub> –0 <sub>15</sub> |
| ~               | L               | Н                               | Н                               |
| ~               | L               | L                               | L                               |
| L               | 1               | х                               | O <sub>0</sub>                  |
| _               | L .             | X                               | Z                               |


H = HIGH Voltage Leve L = LOW Voltage Level

#### **Functional Description**

The LCXH162374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store

the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP<sub>n</sub>) transition. With the Output Enable ( $\overline{OE}_n$ ) LOW, the contents of the flip-flops are available at the outputs. When  $\overline{OE}_n$  is HIGH, the outputs go to the high impedance state. Operation of the  $\overline{OE}_n$  input does not affect the state of the flip-flops.

#### **Logic Diagrams**



## 74LCXH162374

| <b>–</b> |
|----------|
| N        |
| ന        |
| 2        |
| 623      |
| ~        |
| -        |
|          |
| ~        |
| C        |
| Ľ        |
|          |
| 4        |
| ~        |

#### Absolute Maximum Ratings(Note 3)

| Symbol           | Parameter                                         | Value                         | Conditions                           | Units |
|------------------|---------------------------------------------------|-------------------------------|--------------------------------------|-------|
| V <sub>CC</sub>  | Supply Voltage                                    | -0.5 to +7.0                  |                                      | V     |
| VI               | DC Input Voltage I <sub>0</sub> - I <sub>15</sub> | -0.5 to V <sub>CC</sub> + 0.5 |                                      | V     |
|                  | OE <sub>n</sub> , LE <sub>n</sub>                 | -0.5V to 7.0V                 |                                      | v     |
| Vo               | DC Output Voltage                                 | -0.5 to +7.0                  | 3-STATE                              | V     |
|                  |                                                   | –0.5 to $V_{CC}$ + 0.5        | Output in HIGH or LOW State (Note 4) | v     |
| I <sub>IK</sub>  | DC Input Diode Current                            | -50                           | V <sub>I</sub> < GND                 | mA    |
| I <sub>OK</sub>  | DC Output Diode Current                           | -50                           | V <sub>O</sub> < GND                 | mA    |
|                  |                                                   | +50                           | $V_{O} > V_{CC}$                     | ШA    |
| I <sub>O</sub>   | DC Output Source/Sink Current                     | ±50                           |                                      | mA    |
| I <sub>CC</sub>  | DC Supply Current per Supply Pin                  | ±100                          |                                      | mA    |
| I <sub>GND</sub> | DC Ground Current per Ground Pin                  | ±100                          |                                      | mA    |
| T <sub>STG</sub> | Storage Temperature                               | -65 to +150                   |                                      | °C    |

#### Recommended Operating Conditions (Note 5)

| Symbol                           | Parameter                                                 |                                                                            | Min | Max             | Units |
|----------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|-----|-----------------|-------|
| V <sub>CC</sub>                  | Supply Voltage                                            | Operating                                                                  | 2.0 | 3.6             | V     |
|                                  |                                                           | Data Retention                                                             | 1.5 | 3.6             | v     |
| VI                               | Input Voltage                                             | 40 X                                                                       | 0   | V <sub>CC</sub> | V     |
| Vo                               | Output Voltage                                            | HIGH or LOW State                                                          | 0   | V <sub>CC</sub> | V     |
|                                  |                                                           | 3-STATE                                                                    | 0   | 5.5             | v     |
| I <sub>OH</sub> /I <sub>OL</sub> | Output Current in I <sub>OH</sub> /I <sub>OL</sub>        | $V_{CC} = 3.0V - 3.6V$<br>$V_{CC} = 2.7V - 3.0V$<br>$V_{CC} = 2.3V - 2.7V$ |     | ±12             |       |
|                                  |                                                           | $V_{CC} = 2.7V - 3.0V$                                                     |     | ±8              | mA    |
|                                  |                                                           | V <sub>CC</sub> = 2.3V – 2.7V                                              |     | ±4              |       |
| Τ <sub>A</sub>                   | Free-Air Operating Temperature                            |                                                                            | -40 | 85              | °C    |
| $\Delta t / \Delta V$            | Input Edge Rate, $V_{IN} = 0.8V - 2.0V$ , $V_{CC} = 3.0V$ |                                                                            | 0   | 10              | ns/V  |

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: Io Absolute Maximum Rating must be observed.

Note 5: Floating or unused control inputs must be HIGH or LOW.

#### **DC Electrical Characteristics**

| Symbol          | Parameter                 | r       | Conditions                | V <sub>cc</sub> | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ |      | Units |  |
|-----------------|---------------------------|---------|---------------------------|-----------------|-----------------------------------------------|------|-------|--|
| Symbol          | Falanete                  |         | Conditions                | (V)             | Min                                           | Max  | Units |  |
| V <sub>IH</sub> | HIGH Level Input Voltage  |         |                           | 2.3 – 2.7       | 1.7                                           |      | v     |  |
|                 |                           |         |                           | 2.7 - 3.6       | 2.0                                           |      | v     |  |
| V <sub>IL</sub> | LOW Level Input Voltage   |         |                           | 2.3 – 2.7       |                                               | 0.7  | v     |  |
|                 |                           |         |                           | 2.7 - 3.6       |                                               | 0.8  | v     |  |
| V <sub>OH</sub> | HIGH Level Output Voltage |         | I <sub>OH</sub> = -100 μA | 2.3 - 3.6       | V <sub>CC</sub> - 0.2                         |      |       |  |
|                 |                           |         | $I_{OH} = -4 \text{ mA}$  | 2.3             | 1.8                                           |      |       |  |
|                 |                           |         | $I_{OH} = -4mA$           | 2.7             | 2.2                                           |      | v     |  |
|                 |                           |         | $I_{OH} = -6 \text{ mA}$  | 3.0             | 2.4                                           |      | v     |  |
|                 |                           |         | $I_{OH} = -8 \text{ mA}$  | 2.7             | 2.0                                           |      |       |  |
|                 |                           |         | $I_{OH} = -12 \text{ mA}$ | 3.0             | 2.0                                           |      | 1     |  |
| V <sub>OL</sub> | LOW Level Output Voltage  |         | I <sub>OL</sub> = 100 μA  | 2.3 - 3.6       |                                               | 0.2  |       |  |
|                 |                           |         | $I_{OL} = 4 \text{ mA}$   | 2.3             |                                               | 0.6  |       |  |
|                 |                           |         | $I_{OL} = 4 \text{ mA}$   | 2.7             |                                               | 0.4  | v     |  |
|                 |                           |         | $I_{OL} = 6 \text{ mA}$   | 3.0             |                                               | 0.55 | v     |  |
|                 |                           |         | I <sub>OL</sub> = 8 mA    | 2.7             |                                               | 0.6  | 1     |  |
|                 |                           |         | I <sub>OL</sub> = 12 mA   | 3.0             |                                               | 0.8  | 1     |  |
| I <sub>I</sub>  | Input Leakage Current     | Data    | $V_I = V_{CC}$ or GND     | 2.3 - 3.6       |                                               | ±5.0 | μA    |  |
|                 |                           | Control | $0V \le V_I \le 5.5V$     | 2.3 - 3.6       | 1                                             | ±5.0 | μΑ    |  |

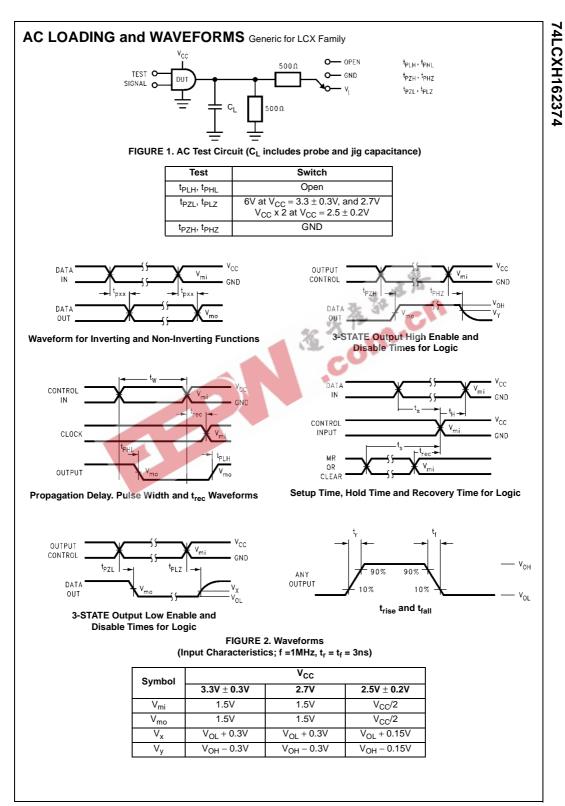
| Symbol               | Parameter                             | Conditions                                          | v <sub>cc</sub> | T <sub>A</sub> = -40°0 | C to +85°C | Units |
|----------------------|---------------------------------------|-----------------------------------------------------|-----------------|------------------------|------------|-------|
| Gymbol               | i arameter                            | Conditions                                          | (V)             | Min                    | Max        | onna  |
| I <sub>I(HOLD)</sub> | Bushold Input Minimum                 | $V_{IN} = 0.7V$                                     | 2.3             | 45                     |            |       |
|                      | Drive Hold Current                    | V <sub>IN</sub> = 1.7V                              | 3.0             | -45                    |            | μΑ    |
|                      |                                       | $V_{IN} = 0.8V$                                     |                 | 75                     |            |       |
|                      |                                       | V <sub>IN</sub> = 2.0V                              | 3.0             | -75                    |            |       |
| I <sub>I(OD)</sub>   | Bushold Input Over-Drive              | (Note 7)                                            | 2.7             | 300                    |            | μΑ    |
|                      | Current to Change State               | (Note 8)                                            |                 | -300                   |            |       |
|                      |                                       | (Note 7)                                            | 3.6             | 450                    |            |       |
|                      |                                       | (Note 8)                                            | 3.0             | -450                   |            |       |
| I <sub>OZ</sub>      | 3-STATE Output Leakage                | $V_O = V_{CC}$ or GND<br>$V_I = V_{IH}$ or $V_{IL}$ | 2.3 - 3.6       |                        | ±5.0       | μA    |
| I <sub>OFF</sub>     | Power-Off Leakage Current             | $V_{O} = V_{CC}$                                    | 0               |                        | 10         | μΑ    |
| I <sub>CC</sub>      | Quiescent Supply Current              | $V_I = V_{CC}$ or GND                               | 2.3 - 3.6       |                        | 20         |       |
|                      |                                       | $3.6V \le V_0 \le 5.5V$ (Note 6)                    | 2.3 - 3.6       |                        | ±20        | μA    |
| $\Delta I_{CC}$      | Increase in I <sub>CC</sub> per Input | $V_{IH} = V_{CC} - 0.6V$                            | 2.3 - 3.6       | .43                    | 500        | μΑ    |

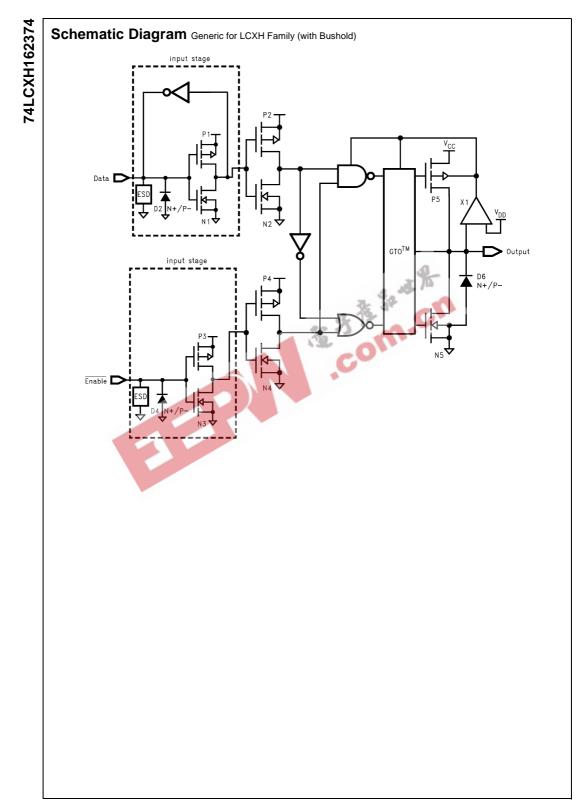
| $\Delta I_{CC}$  | Increase in I <sub>CC</sub> per Input                    | $V_{\rm IH} = V_{\rm CC} - 0.6$ | 6V               | 2.3              | 3 – 3.6               | 3                       | 500           | μA    |
|------------------|----------------------------------------------------------|---------------------------------|------------------|------------------|-----------------------|-------------------------|---------------|-------|
| Note 6: Out      | puts disabled or 3-STATE only.                           |                                 |                  |                  |                       | JD.                     |               |       |
|                  | external driver must source at least the specified curre |                                 |                  |                  | 40.00                 |                         |               |       |
| Note 8: An       | external driver must sink at least the specified current | to switch from H                | IIGH-to-LOW      | l. 🕵             | 34                    | ~                       |               |       |
| AC EI            | ectrical Characteristics                                 |                                 | 36               | 37               | -                     | 0                       |               |       |
|                  |                                                          |                                 | T <sub>A</sub> = | -40° to +8       | 5°C, R <sub>L</sub> = | 5 <b>00</b> Ω           |               |       |
| Symbol           | Parameter                                                | V <sub>CC</sub> = 3.3           | 3V ± 0.3V        | V <sub>cc</sub>  | 2.7V                  | V <sub>CC</sub> = 2.    | $5V \pm 0.2V$ | Units |
| Symbol           | Falallelel                                               | C <sub>L</sub> =                | 50 pF            | C <sub>L</sub> = | 50 pF                 | <b>C</b> <sub>L</sub> = | 30 pF         | Units |
|                  |                                                          | Min                             | Max              | Min              | Max                   | Min                     | Max           |       |
| f <sub>MAX</sub> | Maximum Clock Frequency                                  | 170                             |                  |                  |                       |                         |               | MHz   |
| t <sub>PHL</sub> | Propagation Delay                                        | 1.5                             | 7.0              | 1.5              | 7.3                   | 1.5                     | 8.4           | ns    |
| t <sub>PLH</sub> | CP to On                                                 | 1.5                             | 7.0              | 1.5              | 7.3                   | 1.5                     | 8.4           |       |
| t <sub>PZL</sub> | Output Enable time                                       | 1.5                             | 6.9              | 1.5              | 7.1                   | 1.5                     | 9.0           |       |
| t <sub>PZH</sub> |                                                          | 1.5                             | 6.9              | 1.5              | 7.1                   | 1.5                     | 9.0           | ns    |
| t <sub>PLZ</sub> | Output Disable Time                                      | 1.5                             | 6.0              | 1.5              | 6.2                   | 1.5                     | 7.2           | ns    |
| t <sub>PHZ</sub> |                                                          | 1.5                             | 6.0              | 1.5              | 6.2                   | 1.5                     | 7.2           | 115   |
| s                | Setup Time                                               | 2.5                             |                  | 2.5              |                       | 3.0                     |               | ns    |
| н                | Hold Time                                                | 1.5                             |                  | 1.5              |                       | 2.0                     |               | ns    |
| tw               | Pulse Width                                              | 3.0                             |                  | 3.0              |                       | 3.5                     |               | ns    |
| OSHL             | Output to Output Skew (Note 9)                           |                                 | 1.0              |                  |                       |                         |               |       |
| toslh            |                                                          |                                 | 1.0              |                  |                       |                         |               | ns    |

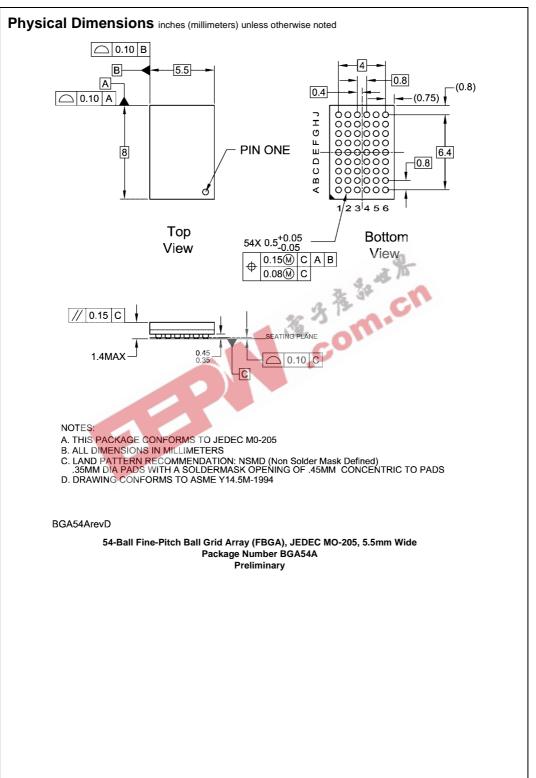
Note 9: Skew is defined as the absolute value of the differences between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t<sub>OSHL</sub>) or LOW-to-HIGH (t<sub>OSLH</sub>). Parameter guaranteed by design.

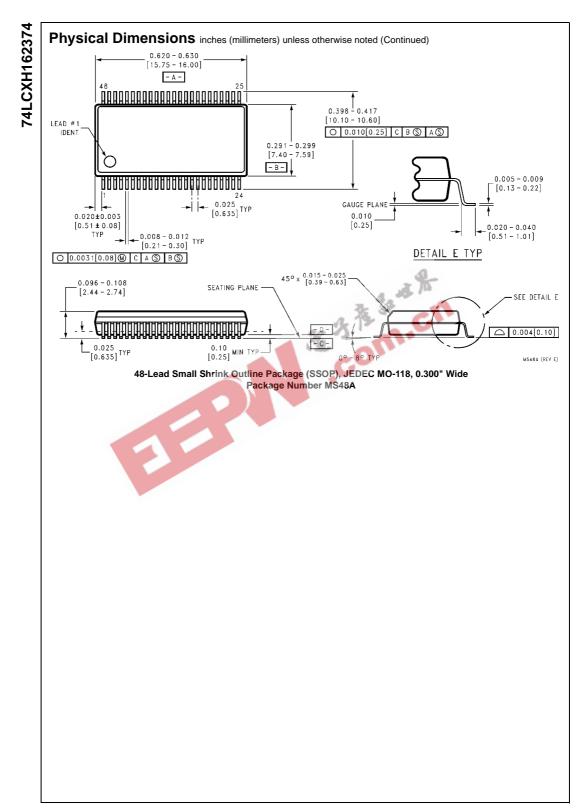
## 74LCXH162374

# 74LCXH162374


#### **Dynamic Switching Characteristics**


| Symbol           | Parameter                                   | Conditions                                                                        | $V_{CC}$ $T_A = 25^\circ$ |         | Units |
|------------------|---------------------------------------------|-----------------------------------------------------------------------------------|---------------------------|---------|-------|
| Oymbol           | i arameter                                  | Conditions                                                                        | (V)                       | Typical | Onits |
| VOLP             | Quiet Output Dynamic Peak VOL               | $C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$                 | 3.3                       | 0.35    | V     |
|                  |                                             | $C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$ | 2.5                       | 0.25    | v     |
| V <sub>OLV</sub> | Quiet Output Dynamic Valley V <sub>OL</sub> | $C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$                 | 3.3                       | -0.35   | V     |
|                  |                                             | $C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$ | 2.5                       | -0.25   | v     |


#### Capacitance


| Symbol           | Parameter                     | Conditions                                            | Typical | Units |
|------------------|-------------------------------|-------------------------------------------------------|---------|-------|
| C <sub>IN</sub>  | Input Capacitance             | $V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$          | 7       | pF    |
| C <sub>OUT</sub> | Output Capacitance            | $V_{CC} = 3.3V$ , $V_I = 0V$ or $V_{CC}$              | 8       | pF    |
| C <sub>PD</sub>  | Power Dissipation Capacitance | $V_{CC} = 3.3V$ , $V_I = 0V$ or $V_{CC}$ , f = 10 MHz | 20      | pF    |

