FAIRCHILD

SEMICONDUCTOR

74LVX163 Low Voltage Synchronous Binary Counter with Synchronous Clear

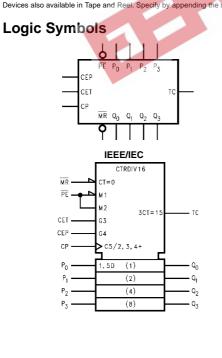
General Description

The LVX163 is a synchronous modulo-16 binary counter. This device is synchronously presettable for application in programmable dividers and has two types of Count Enable inputs plus a Terminal Count output for versatility in forming multistage counters. The CLK input is active on the rising edge. Both \overrightarrow{PE} and \overrightarrow{MR} inputs are active on low logic levels. Presetting is synchronous to rising edge of the CLK and the Clear function of the LVX163 is synchronous to the CLK. Two enable inputs (CEP and CET) and Carry Output are provided to enable easy cascading of counters, which

facilitates easy implementation of n-bit counters without using external gates.

October 1996

Revised March 1999


The inputs tolerate voltages up to 7V allowing the interface of 5V systems to 3V systems.

Features

- Input voltage level translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise and dynamic threshold performance

Ordering Code:

Order Number	Package Number	Package Description
74LVX163M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74LVX163SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX163MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Connection Diagram

-	J		
_	$\square \bigcirc$		
MR —	1	16	- v _c
СР —	2	15	— тс
P ₀ —	3	14	- Q ₀
P ₁ —	4	13	- Q1
P ₂ —	5	12	— Q ₂
P3 —	6	11	— Q ₃
СЕР —	7	10	— CE
GND —	8	9	- PE

Pin Descriptions

Pin	Description
Names	
CEP	Count Enable Parallel Input
CET	Count Enable Trickle Input
CP	Clock Pulse Input
MR	Synchronous Master Reset Input
P ₀ -P ₃	Parallel Data Inputs
PE	Parallel Enable Inputs
Q ₀ –Q ₃	Flip-Flop Outputs
тс	Terminal Count Output

© 1999 Fairchild Semiconductor Corporation DS012157.prf

Functional Description

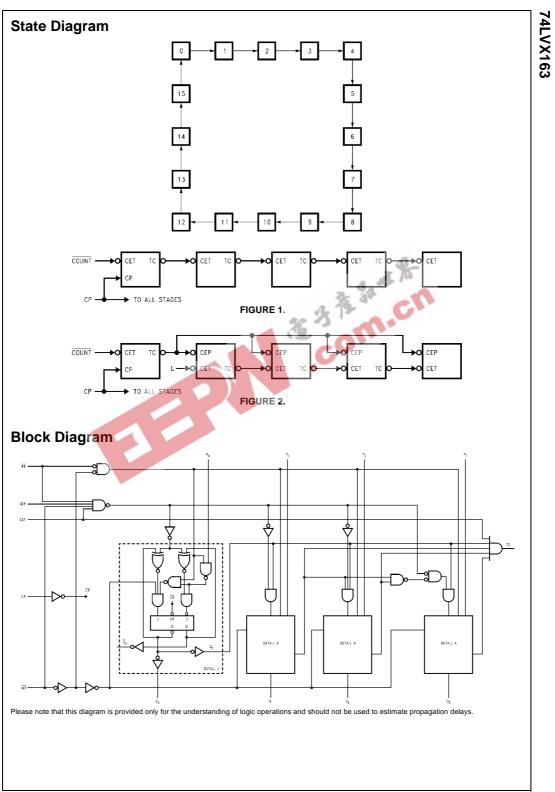
The LVX163 counts in modulo-16 binary sequence. From state 15 (HHHH) it increments to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: synchronous reset, parallel load, count-up and hold. Four control inputs-Synchronous Reset (MR), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET)-determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (P_n) inputs to be loaded into the flip-flops on the next rising edge of CP. With PE and MR HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The LVX163 uses D-type edge-triggered flip-flops and changing the MR, PE, CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

The Terminal Count (TC) output is HIGH when CET is HIGH and counter is in state 15. To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways.

Figure 1 shows the connections for simple ripple carry, in which the clock period must be longer than the CP to $\overline{\text{CC}}$ delay of the first stage, plus the cumulative $\overline{\text{CET}}$ to $\overline{\text{TC}}$ delays of the intermediate stages, plus the $\overline{\text{CET}}$ to $\overline{\text{CC}}$ setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry lookahead connections shown in Figure 2 are recommended. In this scheme the ripple delay through

the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode, or min to max in the Down mode, to start its final cycle. Since this final cycle takes 16 clocks to complete, there is plenty of time for the ripple to progress through the intermediate stages. The critical timing that limits the clock period is the CP to TC delay of the first stage plus the CEP to CP setup time of the last stage. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, registers or counters. When the Parallel Enable (PE) is LOW, the parallel data outputs O0-O3 are active and follow the flip-flop Q outputs. A HIGH signal on $\overline{\text{PE}}$ forces O_0-O_3 to the High impedance state but does not prevent counting, loading or resetting


Logic Equations: Count Enable = CEP • CET • \overrightarrow{PE} TC = Q₀ • Q₁ • Q₂ • Q₃ • CET

		Moc	le Sele	ct Table
MR	PE	CET	CEP	Action on the Rising
.0	、名	34	c.S	Clock Edge (_/-)
SCLZ.	Х	X	Х	Reset (Clear)
Н	. 6	X	Х	$\text{Load}\;(\text{P}_n \rightarrow \text{Q}_n)$
H	Н	н	Н	Count (Increment)
H	н	L	Х	No Change (Hold)
н	н	х	L	No Change (Hold)

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

r = LOW-to-HIGH Clock Transition

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_{I} = -0.5V$	–20 mA
DC Input Voltage (VI)	-0.5V to 7V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	$-0.5 V$ to $V_{CC} + 0.5 V$
DC Output Source	
or Sink Current (I _O)	±25 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time ($\Delta t/\Delta v$)	0 ns/V to 100 ns/V

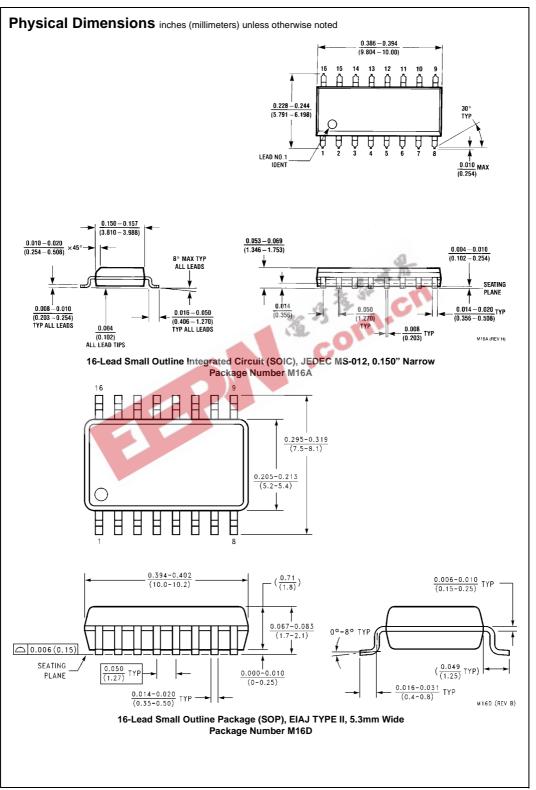
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

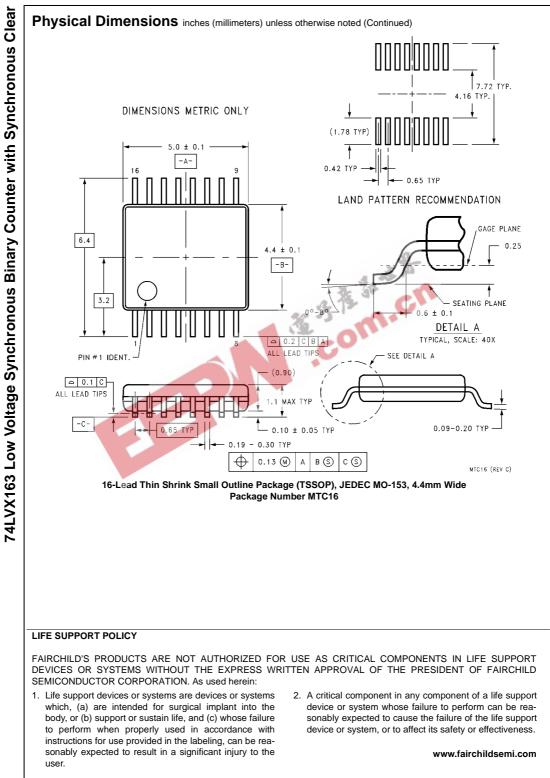
-

DC Electrical Characteristics

Symbol	Parameter	v _{cc}		$T_A = +25^{\circ}C$		$T_A = -40^{\circ}$	C to +85°C	Units	Conditi	one
Symbol	Falanielei	*CC	Min	Тур	Max	Min	Max	Units	Condition	0115
VIH	HIGH Level Input	2.0	1.5		80	1.5	-			
	Voltage	3.0	2.0		100	2.0		V		
		3.6	2.4			2.4				
VIL	LOW Level Input	2.0			0.5		0.5			
	Voltage	3.0		1.1	0.8 🧖		0.8	V		
		3.6			0.8		0.8			
V _{OH}	HIGH Level Output	2.0	1.9	2.0		1.9			$V_{IN} = V_{IL} \text{ or } V_{IH}$	l _{OH} = -50 μA
	Voltage	3.0	2.9	3.0		2.9		V	1	l _{OH} = -50 μA l _{OH} = -4 mA
		3.0	2.58			2.48			1	I _{OH} = -4 mA
V _{OL}	LOW Level Output	2.0		0.0	0.1		0.1		$V_{IN} = V_{IL} \text{ or } V_{IH}$	l _{OL} = 50 μA
	Voltage	3.0		0.0	0.1		0.1	V	1	l _{OL} = 50 μA
		3.0			0.36		0.44		1	l _{OL} = 50 μA l _{OL} = 4 mA
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μA	$V_{IN} = 5.5V \text{ or } GNI$	D
I _{CC}	Quiescent Supply Current	3.6			2.0		20.0	μA	$V_{IN} = V_{CC}$ or GNE)


Noise Characteristics

Symbol	Parameter	V _{cc}	T _A =	25°C	Units	C _L (pF)
Cymbol	i didilicitor	(V)	Тур	Limits	onno	•E (b.)
V _{OLP}	Quiet Output Maximum	3.3	0.2	0.5	V	50
(Note 3)	Dynamic V _{OL}					
V _{OLV}	Quiet Output Minimum	3.3	-0.2	-0.5	V	50
(Note 3)	Dynamic V _{OL}					
VIHD	Minimum HIGH Level	3.3		2.0	V	50
(Note 3)	Dynamic Input Voltage					
V _{ILD}	Maximum LOW Level	3.3		0.8	V	50
(Note 3)	Dynamic Input Voltage					


Note 3: Parameter guaranteed by design.

0	Demonster	V _{cc}		$T_A = 25^\circ C$		$T_A = -40^{\circ}$	C to +85°C	11-16-	O a malifila ma
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions
чLН	Propagation Delay	2.7		9.0	14.0	1.0	16.0	ns	$C_L = 15 \text{ pF}$
HL	Time (CP-Q _n)			11.3	17.0	1.0	19.0	113	$C_L = 50 \text{ pF}$
		3.3 ± 0.3		8.3	12.8	1.0	15.0	ns	C _L = 15 pF
				10.8	16.3	1.0	18.5	113	$C_L = 50 \text{ pF}$
'LH	Propagation Delay	2.7		9.5	14.3	1.0	16.7	ns	C _L = 15 pF
HL	Time (CP-TC, Count)			12.5	18.5	1.0	20.5	113	$C_L = 50 \text{ pF}$
		3.3 ± 0.3		8.7	13.6	1.0	16.0	ns	$C_L = 15 \text{ pF}$
				11.2	17.1	1.0	19.5		$C_L = 50 \text{ pF}$
LH	Propagation Delay	2.7		11.4	18.0	1.0	21.0	ns	$C_L = 15 \text{ pF}$
ΉL	Time (CP-TC, Load)			14.0	21.0	1.0	24.0		$C_L = 50 \text{ pF}$
		3.3 ± 0.3		11.0	17.2	1.0	20.0	ns	$C_L = 15 \text{ pF}$
				13.5	20.7	1.0	23.5	110	$C_L = 50 \text{ pF}$
LH	Propagation Delay	2.7		8.6	13.5	1.0	15.0	ns	$C_L = 15 \text{ pF}$
ΉL	Time (CET-TC)			11.0	16.5	1.0	18.5	110	$C_L = 50 \text{ pF}$
		3.3 ± 0.3		7.5	12.3	1.0	14.5 🧹	ns	C _L = 15 pF
				10.5	15.8	1.0	18.0		C _L = 50 pF
IAX	Maximum Clock	2.7	75	115		65		MHz	C _L = 15 pF
	Frequency		50	80		45			$C_{L} = 50 \text{ pF}$
		$\textbf{3.3}\pm\textbf{0.3}$	80	130	80 1	70		MHz	C _L = 15 pF
			55	85	122	50			$C_L = 50 \text{ pF}$
PD ote 4: C perating	Input Capacitance Power Dissipation Capacita Po is defined as the value of the current can be obtained by the o outputs drive a capacitive load,	internal equivalen equation: I _{CC} (opr) total current consu	t capacitan = C _{PD} * V _C Imption is t	4 23 ce which is c cc * f _{IN} + Icc- he sum of C _F	10 calculated from $D_{\rm D}$, and $\Delta I_{\rm CC}$	om the opera		pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD Note 4: C pperating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the capacity of the	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD Note 4: C pperating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the capacity of the	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
operating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the capacity of the	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD Note 4: C pperating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the capacity of the	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD Note 4: C pperating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the capacity of the	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD Note 4: C pperating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the capacity of the	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD lote 4: C perating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the capacity of the	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD lote 4: C _p perating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the capacity of the	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD lote 4: C perating /hen the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the capacity of the	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD lote 4: C perating /hen the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the capacity of the	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD lote 4: C _l perating /hen the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the capacity of the	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD lote 4: C _l perating /hen the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the capacity of the	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD lote 4: C _l perating /hen the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the component o	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD lote 4: C _l perating /hen the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the component o	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD lote 4: C perating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the component o	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD Note 4: C pperating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the component o	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD Note 4: C pperating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the component o	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD Note 4: C pperating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the component o	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average
PD lote 4: C _p perating When the	Power Dissipation Capacita PD is defined as the value of the current can be obtained by the e outputs drive a capacitive load,	internal equivalent equation: I_{CC} (opr) total current consu $\Delta I_{CC} = F_{C}$	It capacitan = $C_{PD} * V_C$ Imption is the component of the component o	$\frac{4}{23}$ ce which is c cc * f _{IN} + lcc. the sum of C _F $\frac{C_{QQ}}{2} + \frac{C_{Q1}}{4}$	$\frac{10}{D_{D}}$ and ΔI_{CC} $+ \frac{C_{O2}}{8} + \frac{C}{2}$	orm the operation of t	ting current	pF pF consum	V _{CC} = Open (Note 4) ption without load. Average

Minimum Setup Time 2.7 5.5 6.5 ns S Minimum Setup Time 2.7 5.5 6.5 ns S Minimum Setup Time 2.7 8.0 9.5 ns S Minimum Setup Time 2.7 8.0 9.5 ns S Minimum Setup Time 2.7 7.5 9.0 ns S Minimum Setup Time 2.7 7.5 9.0 ns S Minimum Setup Time 2.7 4.0 4.0 ns S Minimum Setup Time 2.7 4.0 4.0 ns S Minimum Setup Time 2.7 1.0 1.0 ns Minimum Setup Time 2.7 4.0 4.0 ms Minimum Hold Time 2.7 1.0 1.0 ns (Pn-CP) 3.3 ± 0.3 1.0 1.0 ns (PE -CP) 3.3 ± 0.3 1.0 1.0 ns (PE -CP) 3.3 ± 0.3 1.0 1.0	S Minimum Setup Time (P _n -CP) 2.7 5.5 6.5 ns S Minimum Setup Time (PE - CP) 2.7 8.0 9.5 ns S Minimum Setup Time (PE - CP) 2.7 8.0 9.5 ns S Minimum Setup Time (CEP or CET-CP) 2.7 7.5 9.0 ns S Minimum Setup Time (MR - CP) 2.7 4.0 4.0 ns S Minimum Mold Time (MR - CP) 2.7 1.0 1.0 ns H Minimum Hold Time (P _n -CP) 2.7 1.0 1.0 ns H Minimum Hold Time (PR - CP) 2.7 1.0 1.0 ns H Minimum Hold Time (CEP or CET-CP) 2.7 1.0 1.0 ns H Minimum Hold Time (CEP or CET-CP) 2.7 1.0 1.0 ns H Minimum Hold Time (CEP or CET-CP) 3.3 ± 0.3 1.0 1.0 ns H Minimum Hold Time (CEP or CET-CP) 2.7 1.5 1.5 ns			V _{cc}	$T_A = 25^{\circ}C$	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Parameter	(V)	Guarante	eed Minimum	Units
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	s	Minimum Setup Time	2.7	5.5	6.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(P _n -CP)	$\textbf{3.3}\pm\textbf{0.3}$	5.5	6.5	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	s	Minimum Setup Time	2.7	8.0	9.5	
			(PE -CP)	3.3 ± 0.3	8.0	9.5	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	s		2.7	7.5	9.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0					ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ie.				4.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0					ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	н					ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
H Minimum Hold Time (CEP or CET-CP) 2.7 1.0 1.0 ns H Minimum Hold Time (MR - CP) 2.7 1.5 1.5 ns w(L) Minimum Pulse Width (MR - CP) 2.7 5.0 5.0 ns w(H) CP (Count) 3.3 ± 0.3 5.0 5.0 ns	H Minimum Hold Time (CEP or CET-CP) 2.7 1.0 1.0 ns H Minimum Hold Time (MR - CP) 2.7 1.5 1.5 ns w(L) Minimum Pulse Width (MR - CP) 2.7 5.0 5.0 ns w(H) CP (Count) 3.3 ± 0.3 5.0 5.0 ns	н					ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	н					ns
(MR - CP) 3.3 ± 0.3 1.5 1.5 ns W(L) W(H) Minimum Pulse Width CP (Count) 2.7 5.0 5.0 ns	(MR - CP) 3.3 ± 0.3 1.5 1.5 ns W(L) W(H) Minimum Pulse Width CP (Count) 2.7 5.0 5.0 ns						
(MR - CP) 3.3 ± 0.3 1.5 1.5 W(L) Minimum Pulse Width 2.7 5.0 5.0 W(H) CP (Count) 3.3 ± 0.3 5.0 5.0	(MR - CP) 3.3 ± 0.3 1.5 1.5 W(L) Minimum Pulse Width 2.7 5.0 5.0 W(H) CP (Count) 3.3 ± 0.3 5.0 5.0	Н				2 m m	ns
W(H) CP (Count) 3.3±0.3 5.0 5.0 ns	W(H) CP (Count) 3.3±0.3 5.0 5.0 ns				-100 T.2Clin		
W(H) CP (Count) 3.3 ± 0.3 5.0 5.0	W(H) CP (Count) 3.3 ± 0.3 5.0 5.0			/h			ns
					om		
					om		
					om		
					om		

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.