
INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 May 15 IC24 Data Handbook 1998 Jun 23

74LV688

FEATURES

- Wide operating voltage: 1.0 to 5.5V
- Optimized for low voltage applications: 1.0V to 3.6V
- Accepts TTL input levels between V_{CC} = 2.7V and V_{CC} = 3.6V
- Typical V_{OLP} (output ground bounce) < 0.8V at V_{CC} = 3.3V, $T_{amb} = 25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot) > 2V at V_{CC} = 3.3V, $T_{amb} = 25^{\circ}C$
- · Compare two 8-bit words
- Output capability: standard
- I_{CC} category: MSI

QUICK REFERENCE DATA

DESCRIPTION

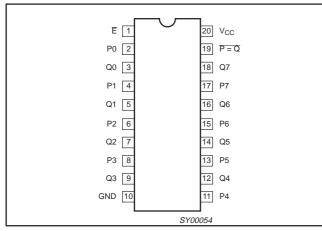
The 74LV688 is a high-speed Si-gate CMOS device, pin compatible with the 74HC/HCT688

The 74LV688 is an 8-bit magnitude comparator. It performs comparisons of two 8-bit binary or BCD words. The output provides $\overline{P = Q}$ (equal-to).

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay P_n , Q_n to $\overline{P=Q}$	C _L = 15pF V _{CC} = 3.3V	17	ns
CI	Input capacitance	~ 3 ~ ~ ~	3.5	pF
C _{PD}	Power dissipation capacitance per gate	$V_{I} = GND$ to V_{CC}^{1}	22	pF

.0

NOTE:

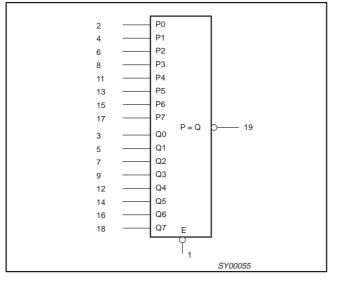

- 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):
 - $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$ $f_{i} = \text{input frequency in MHz; } C_{L} = \text{output load capacity in pF;}$ $f_{o} = \text{output frequency in MHz; } V_{CC} = \text{supply voltage in V;}$

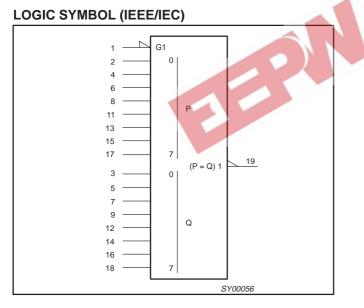
 $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

ORDERING INFORMATION

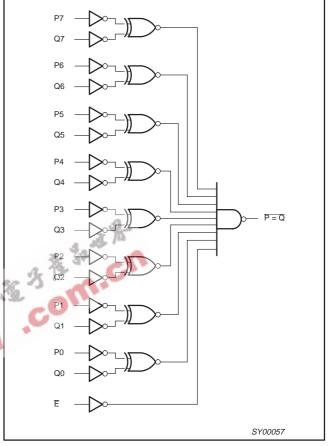
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #	
20-Pin Plastic DIL	-40°C to +125°C	74LV688 N	74LV688 N	SOT146-1	
20-Pin Plastic SO	–40°C to +125°C	74LV688 D	74LV688 D	SOT163-1	
20-Pin Plastic SSOP Type II	–40°C to +125°C	74LV688 DB	74LV688 DB	SOT339-1	
20-Pin Plastic TSSOP Type I	–40°C to +125°C	74LV688 PW	74LV688PW DH	SOT360-1	

PIN CONFIGURATION




PIN DESCRIPTION

PIN NO.	SYMBOL	FUNCTION			
1	Ē	Enable input (active LOW)			
2, 4, 6, 8, 11, 13, 15, 17	P0 to P7 Word inputs				
3, 5, 7, 9, 12, 14, 16, 18	Q0 to Q7	Word inputs			
10	GND	Ground (0V)			
19	P=Q	Equal to output			
20	V _{CC}	Positive Supply Voltage			


74LV688

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INP	OUTPUT	
DATA Pn, Qn	P = Q	
P = Q	L	L
Х	Н	Н
P > Q	L	Н
P < Q	L	Н

NOTES: H = HIGH voltage level L = LOW voltage level X = Don't care

74LV688

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0V).

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V _{CC}	DC supply voltage		-0.5	+7.0	V
I _{IK}	DC input diode current	$V_1 < -0.5$ V or $V_1 > V_{CC} + 0.5$ V	-	± 20	mA
I _{OK}	DC output diode current	$V_{\rm O}$ < -0.5 V or $V_{\rm 0}$ > $V_{\rm CC}$ + 0.5V	-	± 50	mA
Ι _Ο	DC output source or sink current – standard outputs	$-0.5V < V_O < V_{CC} + 0.5V$		± 25	mA
± I _{GND,} ± I _{CC}	DC V _{CC} or GND current for types with – standard outputs			± 50	mA
T _{stg}	Storage temperature range		-65	+150	°C
P _{tot}	power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic medium-shrink SO (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	- - -	750 500 400	mW

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	DC supply voltage	see note 1	1.0	3.3	5.5	V
VI	DC Input voltage		0	-	V _{CC}	V
V _O	DC output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free-air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f (Δt/Δv)	Input rise and fall times	$\begin{array}{c} V_{CC} = 1.0V \mbox{ to } 2.0V \\ V_{CC} = 2.0V \mbox{ to } 2.7V \\ V_{CC} = 2.7V \mbox{ to } 3.6V \\ V_{CC} = 3.6V \mbox{ to } 5.5V \end{array}$		- - - -	500 200 100 50	ns/V

NOTE:

1. The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

74LV688

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0V).

					LIMITS				
SYMBOL	PARAMETER	TEST CONDITIONS	-40	°C to +8	5°C	-40°C to	o +125°C	דואט [
			MIN	TYP ¹	MAX	MIN	MAX	1	
		$V_{CC} = 1.2V$	0.9			0.9			
V	HIGH level Input	$V_{CC} = 2.0V$	1.4			1.4			
VIH	voltage	V _{CC} = 2.7 to 3.6V	2.0			2.0		1 `	
		V _{CC} = 4.5 to 5.5V	0.7 * V _{CC}			0.7 * V _{CC}		1	
		V _{CC} = 1.2V			0.3		0.3		
VIL	LOW level Input	$V_{CC} = 2.0V$			0.6		0.6		
VIL	voltage	V _{CC} = 2.7 to 3.6V			0.8		0.8	1 `	
		V _{CC} = 4.5 to 5.5			0.3 * V _{CC}		0.3 * V _{CC}	1	
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$		1.2					
V _{OH}		$V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	1.8	2.0		1.8		v	
	HIGH level output voltage; all outputs	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	2.5	2.7	5	2.5			
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	2.8	3.0		2.8			
		$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	4.3	4.5	2.20	4.3			
	HIGH level output voltage; STANDARD outputs	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 6mA$	2.40	2.82		2.20			
		$V_{CC} = 4.5V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 12mA$	3.60	4.20		3.50			
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL}, I_O = 100 \mu A$		0					
	LOW level output	$V_{CC} = 2.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 100\mu A$		0	0.2		0.2]	
	voltage; all outputs	$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 100\mu A$		0	0.2		0.2		
V _{OL}		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0	0.2		0.2	l v	
VOL		$V_{CC} = 4.5V; V_{I} = V_{IH} \text{ or } V_{IL;} I_{O} = 100 \mu A$		0	0.2		0.2	ľ	
	LOW level output voltage;	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 6mA$		0.25	0.40		0.50		
	STANDARD outputs	$V_{CC} = 4.5V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12mA$		0.35	0.55		0.65		
lı	Input leakage current	V_{CC} = 5.5V; V_I = V_{CC} or GND			1.0		1.0	μA	
I _{CC}	Quiescent supply current; MSI	$V_{CC} = 5.5V$; $V_I = V_{CC}$ or GND; $I_O = 0$			20.0		160	μA	
ΔI_{CC}	Additional quiescent supply current	$V_{CC} = 2.7V$ to 3.6V; $V_{I} = V_{CC} - 0.6V$			500		850	μΑ	

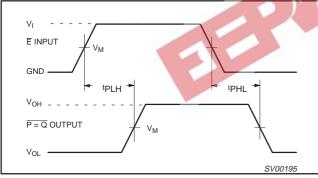
NOTE: 1. All typical values are measured at $T_{amb} = 25^{\circ}C$.

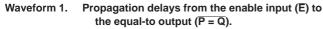
74LV688

AC CHARACTERISTICS

GND = 0V; $t_r = t_f = 2.5ns$; $C_L = 50pF$; $R_L = 1K\Omega$

			CONDITION		LIMITS				
SYMBOL	PARAMETER	WAVEFORM	CONDITION	-	-40 to +85 °	°C	-40 to	+125 °C	UNIT
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	
		1.2		100	-		-		
	t_{PHL}/t_{PLH} Propagation delay P_n, Q_n to $\overline{P=Q}$		2.0		28	45		57	
t _{PHL} /t _{PLH}		2	2.7		20	32		40	ns
			3.0 to 3.6		16 ²	26		33	
			4.5 to 5.5		11 ²	18		22	1
			1.2		50	-		-	
			2.0		17	29		38	1
t _{PHL} /t _{PLH} Propagation delay E to P=Q	1	2.7		13	21		27	ns	
			3.0 to 3.6		10 ²	17		22	1
			4.5 to 5.5		72	12		15	

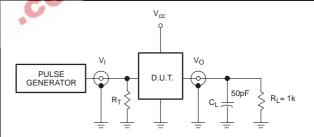

NOTES:


1. Unless otherwise stated, all typical values are at $T_{amb} = 25^{\circ}C$.

2. Typical value measured at $V_{CC} = 3.3V$. 3. Typical value measured at $V_{CC} = 5.0V$.

AC WAVEFORMS

 V_M = 1.5V at $V_{CC} \ge 2.7V; V_M$ = 0.5 V_{CC} at $V_{CC} < 2.7V.$ V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.



Propagation delays from the inputs (Pn, Qn) to Waveform 2. the equal-to output (P = Q).

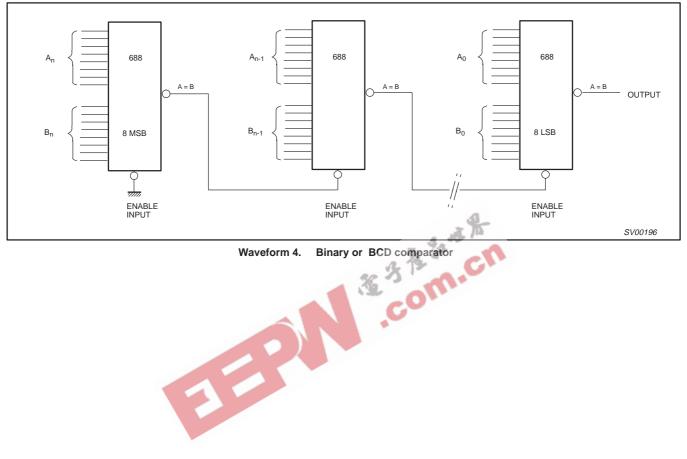
Test Circuit for Outputs

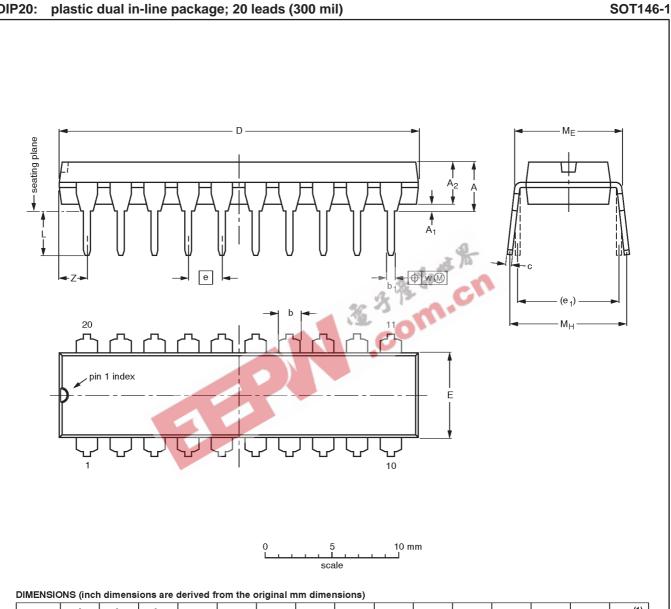
DEFINITIONS

R_L = Load resistor

 C_{L} = Load capacitance includes jig and probe capacitiance

 R_{T} = Termination resistance should be equal to $\mathsf{Z}_{\mathsf{OUT}}$ of pulse generators.


TEST		V _{CC}	VI
t _{PLH} /t _{PHL}		< 2.7V	V _{CC}
		2.7–3.6V	2.7V
		≥ 4.5 V	V _{CC}
	·		


Waveform 3. Load circuitry for switching times

74LV688

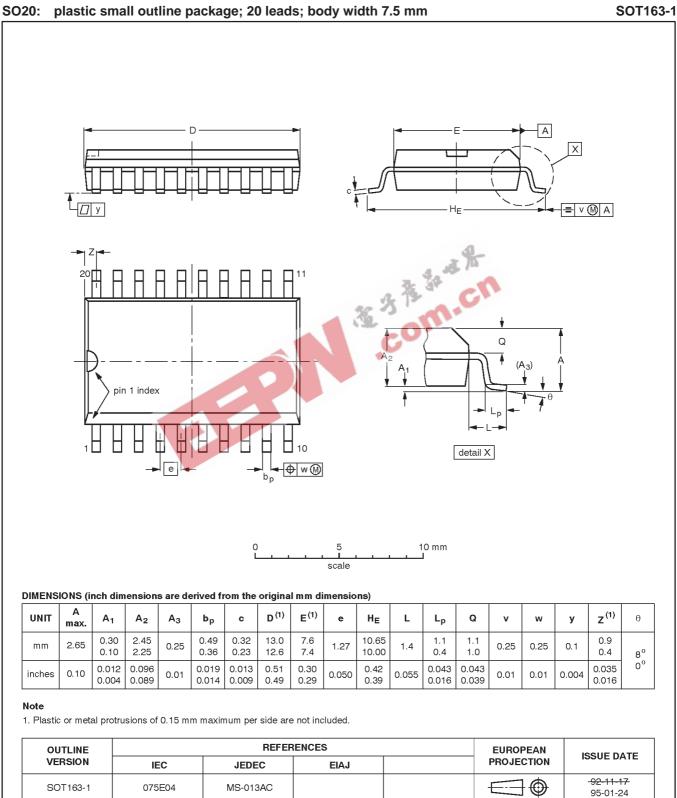
APPLICATION INFORMATION

Two or more "688" 8-bit magnitude comparators may be cascaded to compare binary or BCD numbers of more than 8 bits.

DIP20: plastic dual in-line package; 20 leads (300 mil)

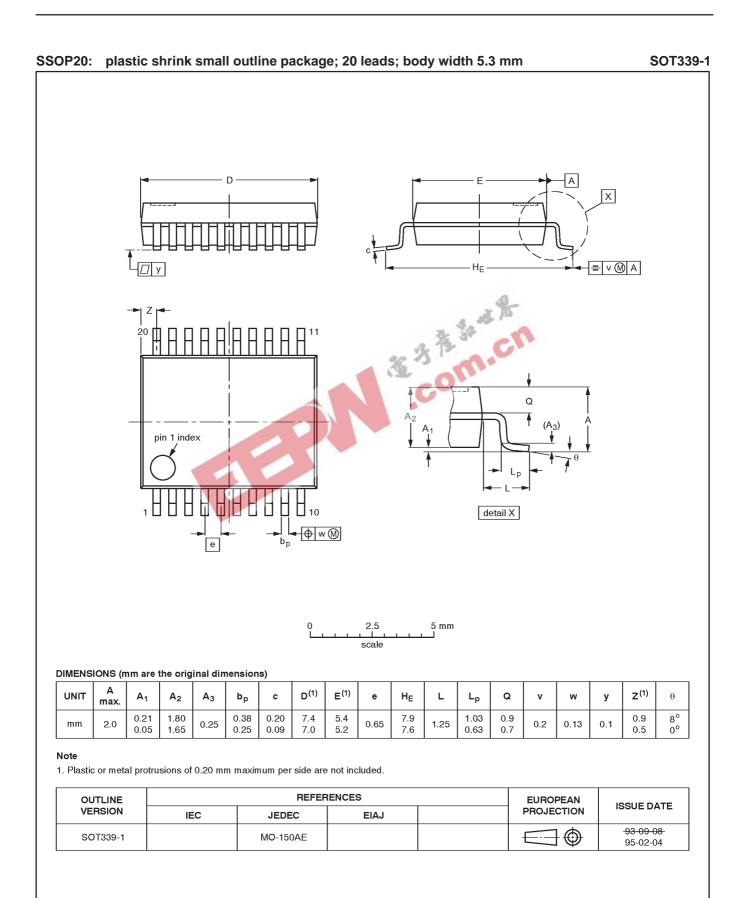
UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	c	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

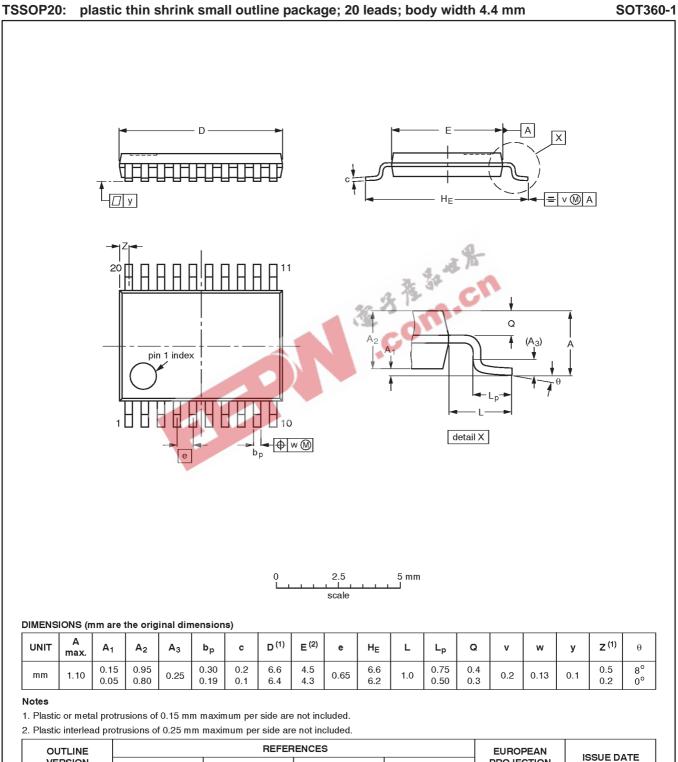

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	REFERENCES	EUROPEAN			
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE		
SOT146-1			SC603		-92-11-17- 95-05-24		

Product specification


74LV688

74LV688


SO20:

74LV688

74LV688

8-bit magnitude comparator

OUTLINE		REFEF	RENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	1550E DATE	
SOT360-1		MO-153AC			-93-06-16 95-02-04	

.

74LV688

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Document order number:

PHILIPS

-

Date of release: 05-96 9397-750-04456

Let's make things better.

