# FAIRCHILD

SEMICONDUCTOR

## 74LCXR2245 Low Voltage Bidirectional Transceiver with 5V Tolerant Inputs and Outputs and 26Ω Series Resistors on Both A and B Ports

#### **General Description**

The LCXR2245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V and 3.3V) V<sub>CC</sub> applications with capability of interfacing to a 5V signal environment. The T/R input determines the direction of data flow through the device. The  $\overline{\text{OE}}$  input disables both the A and B ports by placing them in a high impedance state. The 26Ω series resistor helps reduce output overshoot and undershoot.

The LCXR2245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

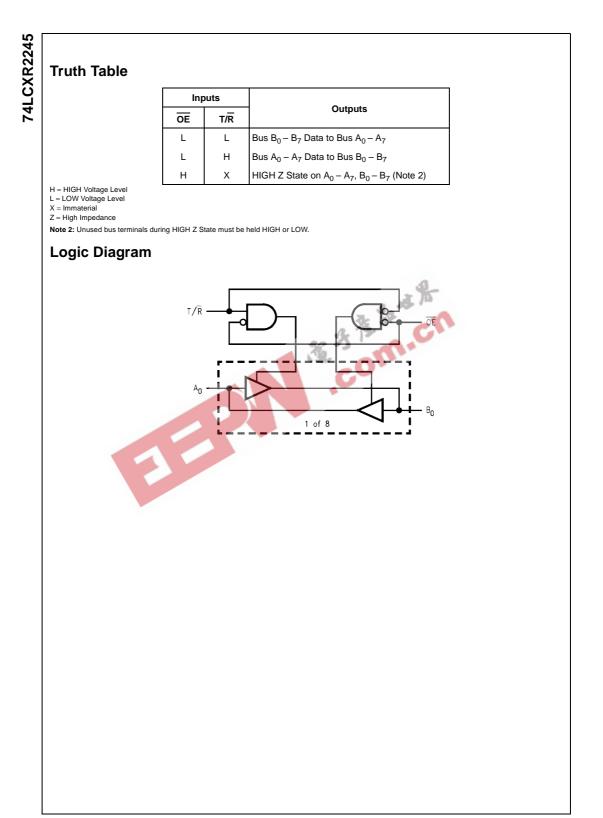
- Features
- 5V tolerant inputs and outputs
- 2.3V–3.6V V<sub>CC</sub> specifications provided
- $\blacksquare$  8.0 ns  $t_{PD}$  max (V\_{CC} = 3.3V), 10  $\mu A$  I\_{CC} max
- Power down high impedance inputs and outputs

October 2000

Revised October 2000

- Supports live insertion/withdrawal (Note 1)
- ±12 mA output drive ( $V_{CC} = 3.0V$ )
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- Equivalent 26Ω series resistor on all outputs
  ESD performance:
- Human body model > 2000V Machine model > 200V

Note 1: To ensure the high-impedance state during power up or down,  $\overline{\text{OE}}$  should be tied to V<sub>CC</sub> through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.


#### **Ordering Code:**

| Order Number           | Package Number            | Package Description                                                         |
|------------------------|---------------------------|-----------------------------------------------------------------------------|
| 74LCXR2245WM           | M20B                      | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide  |
| 74LCXR2245SJ           | M20D                      | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide               |
| 74LCXR2245MSA          | MSA20                     | 20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide       |
| 74LCXR2245MTC          | MTC20                     | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide |
| Devices also available | in Tape and Reel. Specify | by appending the suffix letter "X" to the ordering code.                    |

#### Logic Symbol **Connection Diagram** T/R 20 OF A<sub>0</sub> 19 Bo A<sub>1</sub> Α, Α, B<sub>2</sub> Β<sub>3</sub> **Pin Descriptions** Α5 Bz Pin Names Description A<sub>6</sub> 13 Be OE Output Enable Input Α-12 B<sub>6</sub> GND 10 11 T/R Transmit/Receive Input A<sub>0</sub>-A<sub>7</sub> Side A Inputs or 3-STATE Outputs B<sub>0</sub>-B<sub>7</sub> Side B Inputs or 3-STATE Outputs

www.fairchildsemi.com

**Resistors on Both A and B Ports** 



#### Absolute Maximum Ratings(Note 3)

| Symbol           | Parameter                        | Value                  | Conditions                           | Units |  |
|------------------|----------------------------------|------------------------|--------------------------------------|-------|--|
| V <sub>CC</sub>  | Supply Voltage                   | -0.5 to +7.0           |                                      | V     |  |
| VI               | DC Input Voltage                 | -0.5 to +7.0           |                                      | V     |  |
| Vo               | DC Output Voltage                | -0.5 to +7.0           | Output in 3-STATE                    | V     |  |
|                  |                                  | –0.5 to $V_{CC}{+}0.5$ | Output in HIGH or LOW State (Note 4) | v     |  |
| I <sub>IK</sub>  | DC Input Diode Current           | -50                    | V <sub>I</sub> < GND                 | mA    |  |
| I <sub>ОК</sub>  | DC Output Diode Current          | -50                    | V <sub>O</sub> < GND                 |       |  |
|                  |                                  | +50                    | V <sub>O</sub> > V <sub>CC</sub>     | mA    |  |
| I <sub>O</sub>   | DC Output Source/Sink Current    | ±50                    |                                      | mA    |  |
| I <sub>CC</sub>  | DC Supply Current per Supply Pin | ±100                   |                                      | mA    |  |
| I <sub>GND</sub> | DC Ground Current per Ground Pin | ±100                   |                                      | mA    |  |
| T <sub>STG</sub> | Storage Temperature              | -65 to +150            |                                      | °C    |  |

#### Recommended Operating Conditions (Note 5)

| Symbol                         | Parameter                                                 | Min                                                            | Max | Units           |      |
|--------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|-----|-----------------|------|
| V <sub>CC</sub>                | Supply Voltage                                            | Operating                                                      | 2.0 | 3.6             | V    |
|                                |                                                           | Data Retention                                                 | 1.5 | 3.6             | v    |
| VI                             | Input Voltage                                             | 1 St. 34                                                       | 0   | 5.5             | V    |
| Vo                             | Output Voltage                                            | HIGH or LOW State                                              | 0   | V <sub>CC</sub> | V    |
|                                |                                                           | 3-STATE                                                        | 0   | 5.5             | v    |
| <sub>OH</sub> /I <sub>OL</sub> | Output Current                                            | $V_{CC} = 3.0V - 3.6V$                                         |     | ±12             |      |
|                                |                                                           | V <sub>CC</sub> = 2.7V - 3.0V<br>V <sub>CC</sub> = 2.3V - 2.7V |     | ±8              | mA   |
|                                |                                                           | V <sub>CC</sub> = 2.3V - 2.7V                                  |     | ±4              |      |
| Г <sub>А</sub>                 | Free-Air Operating Temperature                            |                                                                | -40 | 85              | °C   |
| Δt/ΔV                          | Input Edge Rate, $V_{IN} = 0.8V - 2.0V$ , $V_{CC} = 3.0V$ |                                                                | 0   | 10              | ns/V |

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recom-mended Operating Conditions" table will define the conditions for actual device operation. Note 4: I<sub>0</sub> Absolute Maximum Rating must be observed. Note 5: Unused inputs or I/O pins must be held HIGH or LOW. They may not float.

#### **DC Electrical Characteristics**

| Symbol          | Parameter                 | Conditions                                                | v <sub>cc</sub> | $T_A = -40^{\circ}C$ to $+85^{\circ}C$ |      | Units   |
|-----------------|---------------------------|-----------------------------------------------------------|-----------------|----------------------------------------|------|---------|
| Symbol          |                           | Conditions                                                | (V)             | Min                                    | Max  | _ Units |
| VIH             | HIGH Level Input Voltage  |                                                           | 2.3 – 2.7       | 1.7                                    |      | V       |
|                 |                           |                                                           | 2.7 – 3.6       | 2.0                                    |      | v       |
| V <sub>IL</sub> | LOW Level Input Voltage   |                                                           | 2.3 – 2.7       |                                        | 0.7  | V       |
|                 |                           |                                                           | 2.7 - 3.6       |                                        | 0.8  | v       |
| V <sub>OH</sub> | HIGH Level Output Voltage | I <sub>OH</sub> = -100 μA                                 | 2.3 - 3.6       | V <sub>CC</sub> – 0.2                  |      |         |
|                 |                           | $I_{OH} = -4 \text{ mA}$                                  | 2.3             | 1.8                                    |      |         |
|                 |                           | $I_{OH} = -4 \text{ mA}$                                  | 2.7             | 2.2                                    |      | v       |
|                 |                           | $I_{OH} = -6 \text{ mA}$                                  | 3.0             | 2.4                                    |      |         |
|                 |                           | I <sub>OH</sub> = -8 mA                                   | 2.7             | 2.0                                    |      |         |
|                 |                           | I <sub>OH</sub> = -12 mA                                  | 3.0             | 2.0                                    |      |         |
| V <sub>OL</sub> | LOW Level Output Voltage  | I <sub>OL</sub> = 100 μA                                  | 2.3 - 3.6       |                                        | 0.2  |         |
|                 |                           | $I_{OL} = 4 \text{ mA}$                                   | 2.3             |                                        | 0.6  |         |
|                 |                           | $I_{OL} = 4 \text{ mA}$                                   | 2.7             |                                        | 0.4  | v       |
|                 |                           | $I_{OL} = 6 \text{ mA}$                                   | 3.0             |                                        | 0.55 | v       |
|                 |                           | $I_{OL} = 8 \text{ mA}$                                   | 2.7             |                                        | 0.6  |         |
|                 |                           | I <sub>OL</sub> = 12 mA                                   | 3.0             |                                        | 0.8  | 1       |
| l <sub>l</sub>  | Input Leakage Current     | $0 \le V_I \le 5.5V$                                      | 2.3 - 3.6       |                                        | ±5.0 | μΑ      |
| I <sub>OZ</sub> | 3-STATE I/O Leakage       | $0 \le V_O \le 5.5V$<br>$V_I = V_{IH} \text{ or } V_{IL}$ | 2.3 - 3.6       |                                        | ±5.0 | μA      |

# 74LCXR2245

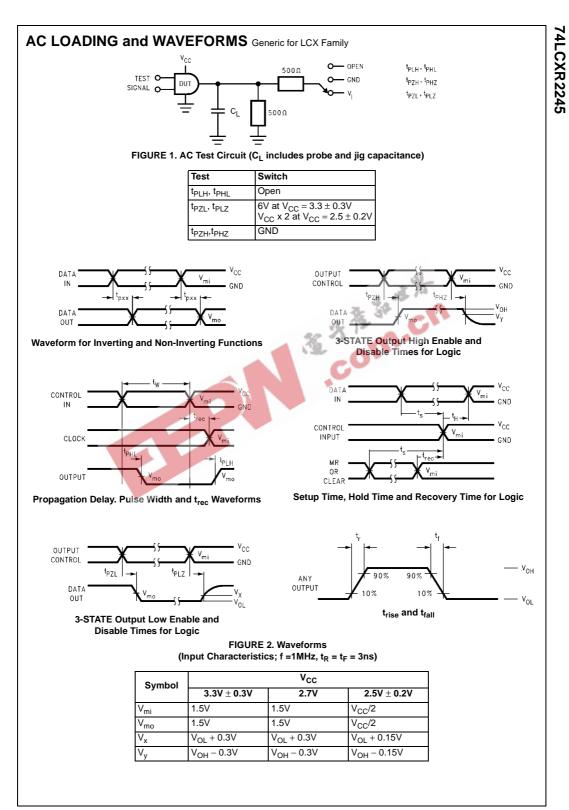
## DC Electrical Characteristics (Continued)

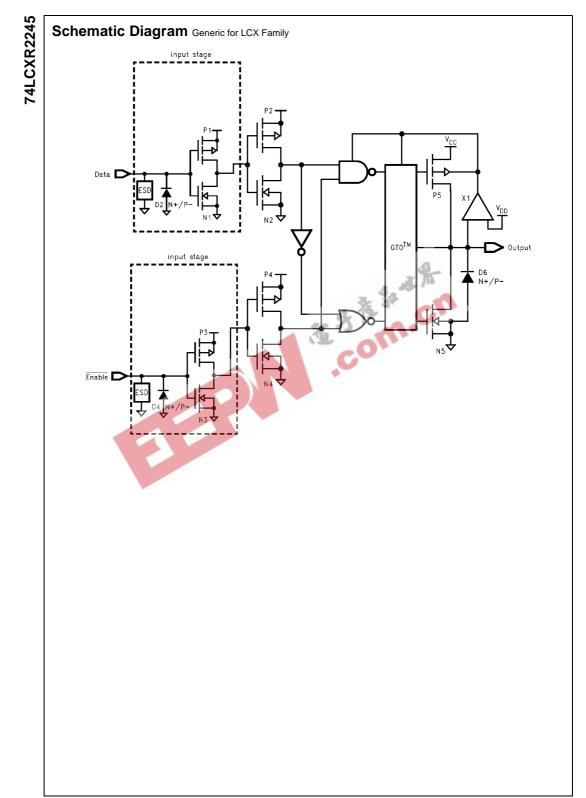
| Symbol           | Parameter                             | Conditions                            | v <sub>cc</sub> | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ |     | Units |
|------------------|---------------------------------------|---------------------------------------|-----------------|-----------------------------------------------|-----|-------|
|                  |                                       | Conditions                            | (V)             | Min                                           | Max | Units |
| I <sub>OFF</sub> | Power-Off Leakage Current             | $V_{I}$ or $V_{O} = 5.5V$             | 0               |                                               | 10  | μA    |
| I <sub>CC</sub>  | Quiescent Supply Current              | $V_I = V_{CC}$ or GND                 | 2.3 - 3.6       |                                               | 10  |       |
|                  |                                       | $3.6V \le V_I, V_O \le 5.5V$ (Note 6) | 2.3 - 3.6       |                                               | ±10 | μA    |
| Δl <sub>CC</sub> | Increase in I <sub>CC</sub> per Input | $V_{IH} = V_{CC} - 0.6V$              | 2.3 - 3.6       |                                               | 500 | μA    |

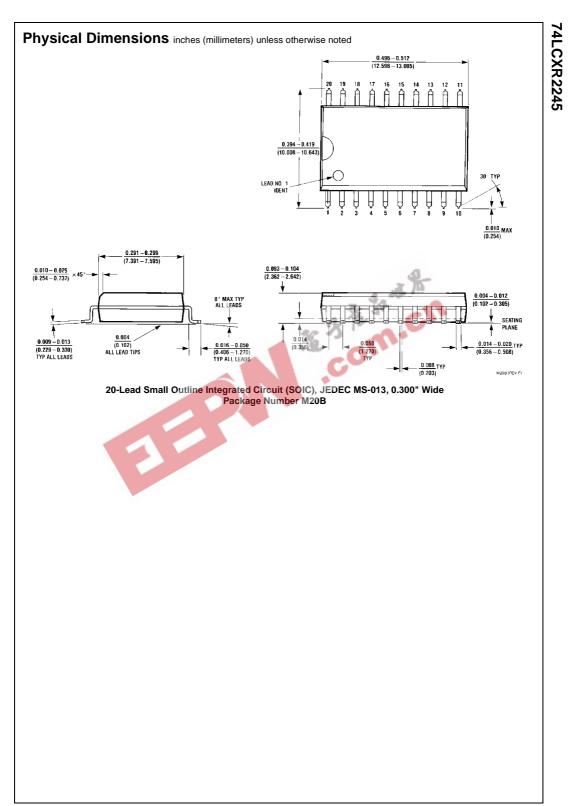
Note 6: Outputs disabled or 3-STATE only.

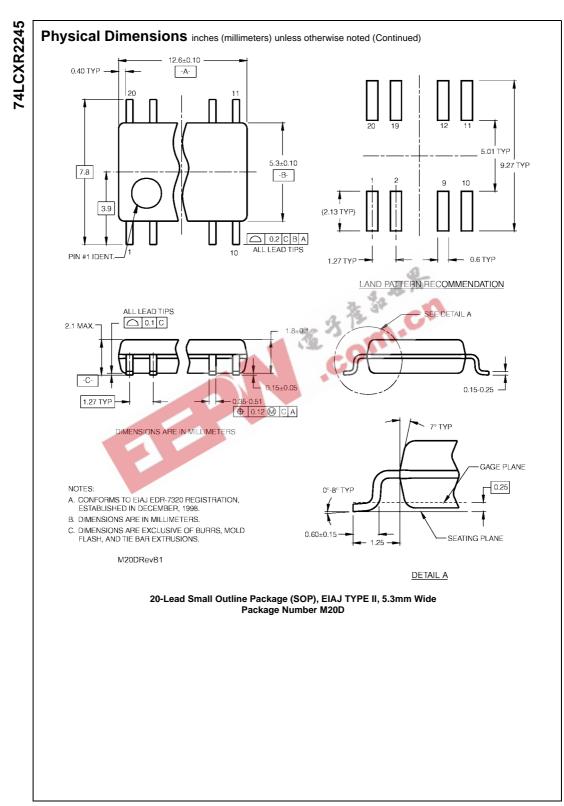
#### **AC Electrical Characteristics**

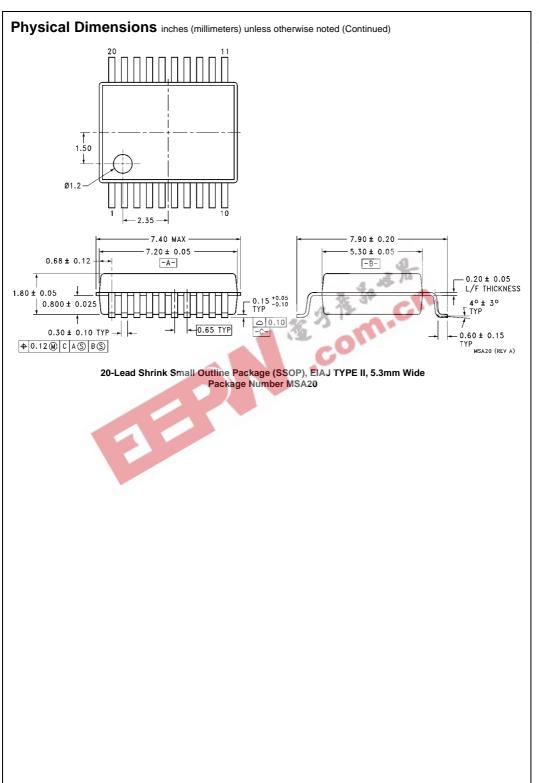
|                   |                                                                      | $T_A = -40^{\circ}C$ to $+85^{\circ}C$ , $R_L = 500\Omega$ |     |                                                  |      |                                                   |      |       |
|-------------------|----------------------------------------------------------------------|------------------------------------------------------------|-----|--------------------------------------------------|------|---------------------------------------------------|------|-------|
| Symbol            | Parameter                                                            | $V_{CC} = 3.3V \pm 0.3V$ $C_L = 50 \text{ pF}$             |     | V <sub>CC</sub> = 2.7V<br>C <sub>L</sub> = 50 pF |      | $V_{CC} = 2.5V \pm 0.2V$<br>$C_L = 30 \text{ pF}$ |      | Units |
| Symbol            | Falailietei                                                          |                                                            |     |                                                  |      |                                                   |      |       |
|                   |                                                                      | Min                                                        | Max | Min                                              | Max  | Min                                               | Max  |       |
| t <sub>PHL</sub>  | Propagation Delay                                                    | 1.5                                                        | 8.0 | 1.5                                              | 9.0  | 1.5                                               | 9.6  |       |
| t <sub>PLH</sub>  | A <sub>n</sub> to B <sub>n</sub> or B <sub>n</sub> to A <sub>n</sub> | 1.5                                                        | 8.0 | 1.5                                              | 9.0  | 1.5                                               | 9.6  | ns    |
| t <sub>PZL</sub>  | Output Enable Time                                                   | 1.5                                                        | 9.5 | 1.5                                              | 10.5 | 1.5                                               | 11.0 | -     |
| t <sub>PZH</sub>  |                                                                      | 1.5                                                        | 9.5 | 1.5                                              | 10.5 | 1.5                                               | 11.0 | ns    |
| t <sub>PLZ</sub>  | Output Disable Time                                                  | 1.5                                                        | 7.5 | 1.5 🍣                                            | 8.5  | 1.5                                               | 9.0  | ns    |
| t <sub>PHZ</sub>  |                                                                      | 1.5                                                        | 7.5 | 1.5                                              | 8.5  | 1.5                                               | 9.0  | 115   |
| t <sub>OSHL</sub> | Output to Output Skew                                                |                                                            | 1.0 | 36. 3                                            |      |                                                   |      | ns    |
| t <sub>OSLH</sub> | (Note 7)                                                             |                                                            | 1.0 |                                                  |      |                                                   |      | 115   |


Note 7: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toSHL) or LOW-to-HIGH (toSLH).


### **Dynamic Switching Characteristics**


| Symbol           | Parameter                       | Conditions                                                                        | Vcc | T <sub>A</sub> = 25°C | Units |
|------------------|---------------------------------|-----------------------------------------------------------------------------------|-----|-----------------------|-------|
| Cymbol           | i urumeter                      | Contaitions                                                                       | (V) | Typical               | onno  |
| V <sub>OLP</sub> | Quiet Output Dynamic Peak VOL   | $C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$                 | 3.3 | 0.5                   | V     |
|                  |                                 | $C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$ | 2.5 | 0.4                   | v     |
| V <sub>OLV</sub> | Quiet Output Dynamic Valley VOL | $C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$                 | 3.3 | 0.5                   | V     |
|                  |                                 | $C_L=30 \text{ pF},  V_{IH}=2.5 \text{V},  V_{IL}=0 \text{V}$                     | 2.5 | 0.4                   | v     |


# Capacitance


| Symbol           | Parameter                     | Conditions                                           | Typical | Units |
|------------------|-------------------------------|------------------------------------------------------|---------|-------|
| C <sub>IN</sub>  | Input Capacitance             | $V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$         | 7       | pF    |
| C <sub>I/O</sub> | Input/Output Capacitance      | $V_{CC} = 3.3V$ , $V_I = 0V$ or $V_{CC}$             | 8       | pF    |
| C <sub>PD</sub>  | Power Dissipation Capacitance | $V_{CC}$ = 3.3V, $V_I$ = 0V or $V_{CC}$ , f = 10 MHz | 25      | pF    |

