INTEGRATED CIRCUITS

74HC/HCT182

Product specification

FEATURES

- · Provides carry look-ahead across a group of four ALU's
- Multi-level look-ahead for high-speed arithmetic operation over long word length
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT182 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT182 carry look-ahead generators accept up to four pairs of active LOW carry propagate (\overline{P}_0 , \overline{P}_1 , \overline{P}_2 , \overline{P}_3) and carry generate (\overline{G}_0 , \overline{G}_1 , \overline{G}_2 , \overline{G}_3) signals and an active HIGH carry input (C_n). The devices provide anticipated active HIGH carries (C_{n+x} , C_{n+y} , C_{n+z}) across four groups of binary adders.

The "182" also has active LOW carry propagate (\overline{P}) and carry generate (\overline{G}) outputs which may be used for further levels of look-ahead.

The logic equations provided at the outputs are:

$$\begin{split} & C_{n+x} = G_0 + P_0 C_n \\ & C_{n+y} = G_1 + P_1 G_0 + P_1 P_0 C_n \\ & C_{n+z} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_n \\ & \overline{G} = \overline{G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0} \\ & \overline{P} = \overline{P_3 P_2 P_1 P_0} \end{split}$$

The "182" can also be used with binary ALU's in an active LOW or active HIGH input operand mode. The connections to and from the ALU to the carry look-ahead generator are identical in both cases.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

CVMDOL	PARAMETER	CONDITIONS	TYF			
SYMBOL	PARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay \overline{P}_n to \overline{P} C_n to any output \overline{P}_n or \overline{G}_n to any output	C _L = 15 pF; V _{CC} = 5 V	11 17 14	14 21 17	ns ns ns	
Cl	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	50	50	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz

 f_o = output frequency in MHz

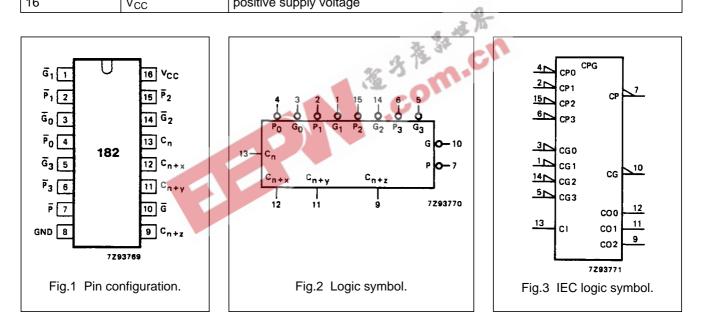
 $\sum (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

 C_L = output load capacitance in pF

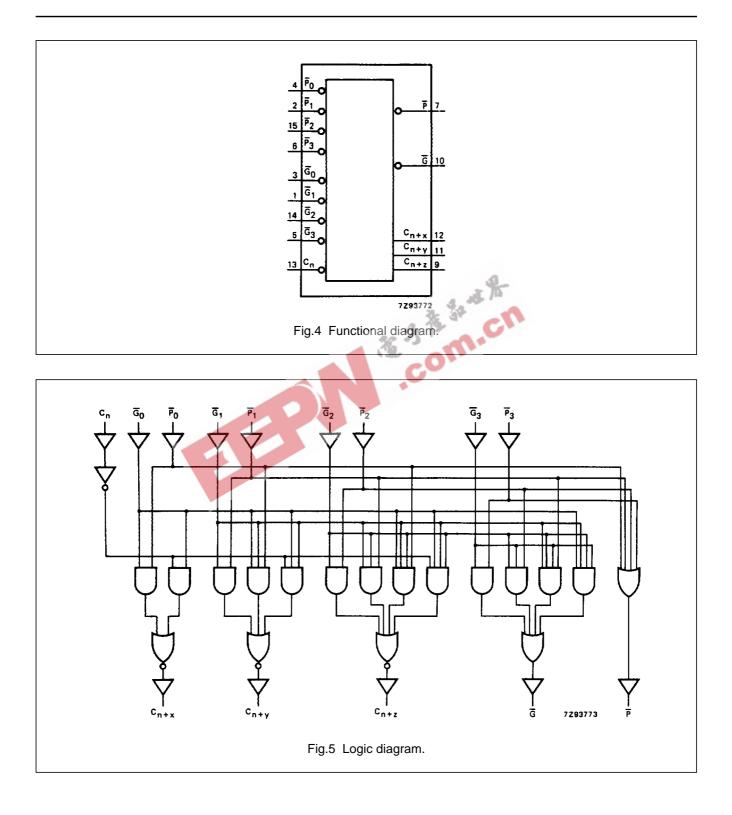
 V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT182


Product specification

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
3, 1, 14, 5	\overline{G}_0 to \overline{G}_3	carry generate inputs (active LOW)
4, 2, 15, 6	\overline{P}_0 to \overline{P}_3	carry propagate inputs (active LOW)
7	P	carry propagate output (active LOW)
8	GND	ground (0 V)
9	C _{n+z}	function output
10	G	carry generate output (active LOW)
11	C _{n+y}	function output
12	C _{n+x}	function output
13	C _n	carry input (active HIGH)
16	V _{CC}	positive supply voltage

74HC/HCT182

74HC/HCT182

FUNCTION TABLE

	INPUTS								OUTPUTS				
Cn	G ₀	P ₀	G ₁	P ₁	G ₂	P ₂	\overline{G}_3	P ₃	C _{n+x}	C _{n+y}	C _{n+z}	G	P
X L	H H	H X							L				
X H	LX	X							H				
X	x	x	н	Н						L			
X L	H H	H X	H H	X X						L			
X X H	X L X	X X L	L X X	X L L						H H H			
X X	X X X	X X	X H	X H	H H	H X		方育		8	L		
X	H H	H X	H H	X X	H H	X X X		小孩	32	n			
x x	X X	X X	X	X X	L X	X L	3		m.		н н		
X H	L X	X	X X	L	X X	-					H H		
	X X X H		X X H H	X X H X	X H H H	X H X X	H H H	H X X X				H H H H	
	X X X L		X X L X	X X X L	X L X X	X X L L	L X X X	X L L L					
		H X X X L		X H X X L		X X H X L		X X X H L					H H H L

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

74HC/HCT182

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL					T _{amb} (TEST CONDITIONS				
					74H0						
	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay \overline{P}_n to \overline{P}		30 14 11	120 24 20		150 30 26	4.4	180 36 31	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay C_n to any output		55 20 16	170 34 29	3	215 43 37	om	255 51 43	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay \overline{P}_n to \overline{G}		47 17 14	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}			47 17 14	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	$\frac{\text{propagation delay}}{\overline{G}_n \text{ to } C_{n+n}}$		44 16 13	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay \overline{G}_n to \overline{G}		41 15 12	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6

74HC/HCT182

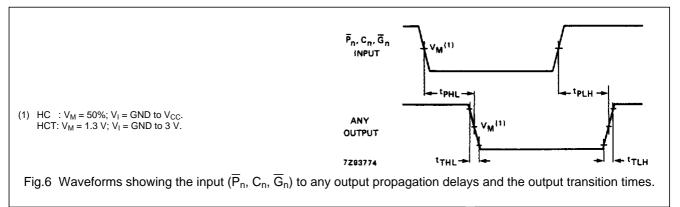
DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

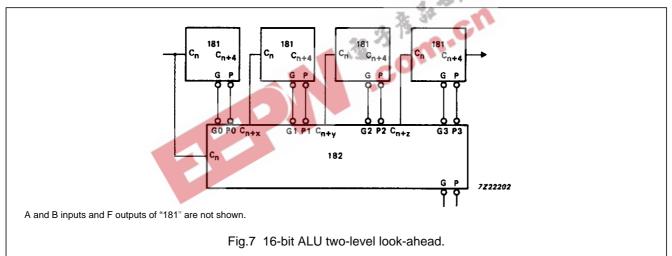
Output capability: standard I_{CC} category: MSI

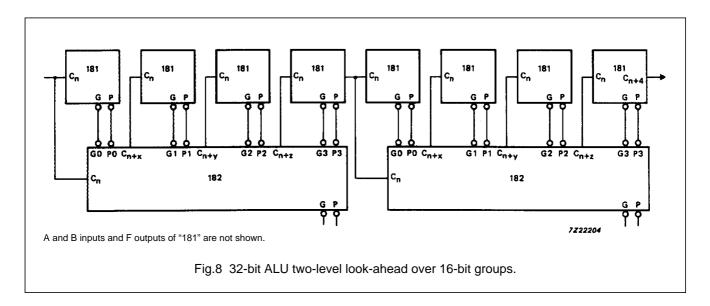
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

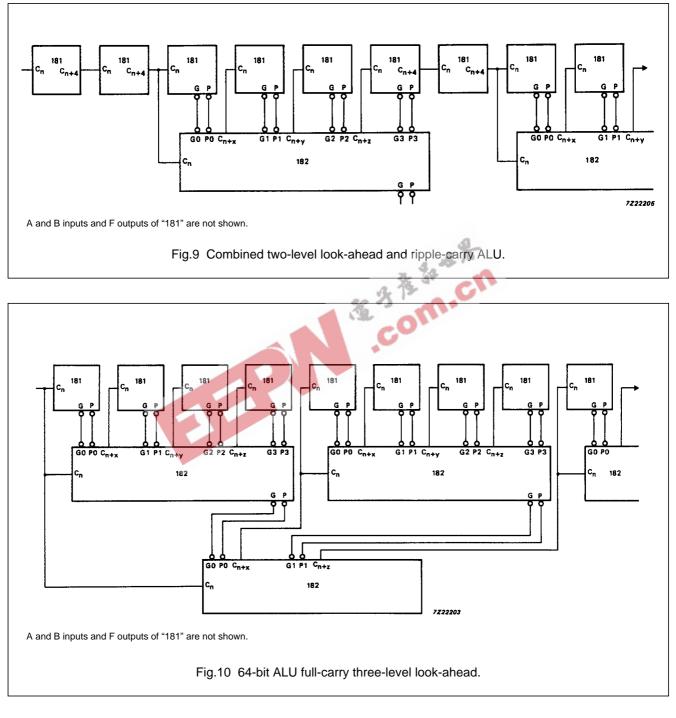

INPUT	UNIT LOAD COEFFICIENT	
$\overline{G}_0, \overline{G}_1, \overline{P}_0, \overline{P}_1, \overline{P}_2$	1.50	
\overline{G}_3	0.30	
$ \overline{\mathbf{G}}_{0}, \overline{\mathbf{G}}_{1}, \overline{\mathbf{P}}_{0}, \overline{\mathbf{P}}_{1}, \overline{\mathbf{P}}_{2} \overline{\mathbf{G}}_{3} \overline{\mathbf{G}}_{2}, \overline{\mathbf{P}}_{3}, \mathbf{C}_{n} $	1.25	

AC CHARACTERISTICS FOR 74HCT


	CTERISTICS FOR 7 $t_r = t_f = 6 \text{ ns; } C_L = 50$		ст		_	3	5 33	12 - A	5 %-				
			Tamb (°C)										
SYMBOL	PARAMETER		min.		+25 typ. max.		to +85 max.	-40 to min.	o +125 max.	UNIT	V _{CC} (V)	WAVEFORMS	
t _{PHL} / t _{PLH}	propagation delay \overline{P}_n to \overline{P}			17	28	min.	35		42	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay C _n to any output			26	43		54		65	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{P}_n to \overline{G}			20	33		41		50	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{P}_n to C_{n+n}			20	33		41		50	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{G}_n to C_{n+n} , \overline{G}_n to \overline{C}	5		18	32		40		48	ns	4.5	Fig.6	
t _{THL} / t _{TLH}	output transition tim	e		7	15		19		22	ns	4.5	Fig.6	


74HC/HCT182

AC WAVEFORMS



APPLICATION INFORMATION

74HC/HCT182

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".