## INTEGRATED CIRCUITS

## DATA SHEET



# **74F256**Dual addressable latch

Product specification

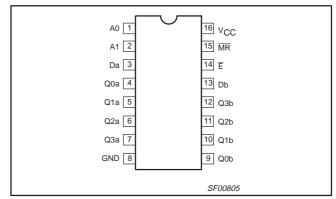
1988 Nov 29

IC15 Data Handbook





74F256


#### **FEATURES**

- Combines dual demultiplexer and 8-bit latch
- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Common reset input
- Useful as dual 1-of-4 active High decoder

#### **DESCRIPTION**

The 74F256 dual addressable latch has four distinct modes of operation which are selectable by controlling the Master Reset ( $\overline{\text{MR}}$ ) and Enable ( $\overline{\text{E}}$ ) inputs (see Function Table). In the addressable latch mode, data at the Data inputs is written into the addressed latches. The addressed latches will follow the Data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the Data or Address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable should be held High (inactive) while the address lines are changing. In the dual 1-of-4 decoding or demultiplexing mode ( $\overline{\text{MR}}=\overline{\text{E}}=\text{Low}$ ), addressed outputs will follow the level of the Data inputs, with all other outputs Low. In the Master Reset mode, all outputs are Low and unaffected by the Address and Data inputs.

#### PIN CONFIGURATION



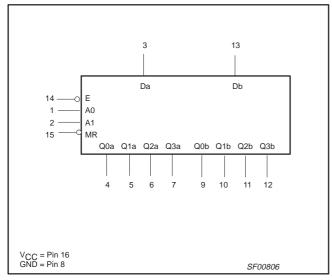
| TYPE           | TYPICAL<br>PROPAGATION<br>DELAY | TYPICAL SUPPLY<br>CURRENT (TOTAL) |
|----------------|---------------------------------|-----------------------------------|
| <b>7</b> 4F256 | 7.0n <b>s</b>                   | 28mA                              |

#### ORDERING INFORMATION

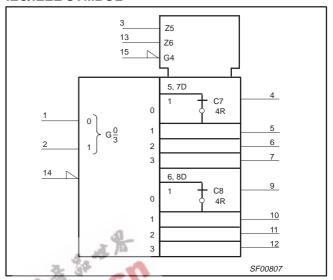
| CO                 | ORDER CODE                                                                         |           |
|--------------------|------------------------------------------------------------------------------------|-----------|
| DESCRIPTION        | COMMERCIAL RANGE $V_{CC} = 5V \pm 10\%$ , $T_{amb} = 0^{\circ}C$ to $+70^{\circ}C$ | PKG DWG # |
| 16-pin plastic DIP | N74F256N                                                                           | SOT38-4   |
| 16-pin plastic SO  | N74F256D                                                                           | SOT109-1  |

#### INPUT AND OUTPUT LOADING AND FAN OUT TABLE

| PINS      | DESCRIPTION                      | 74F (U.L.)<br>HIGH/LOW | LOAD VALUE<br>HIGH/LOW |
|-----------|----------------------------------|------------------------|------------------------|
| Da, Db    | Port A, port B inputs            | 1.0/1.0                | 20μA/0.6mA             |
| A0, A1    | Address inputs                   | 1.0/1.0                | 20μA/0.6mA             |
| Ē         | Enable (active Low)              | 1.0/1.0                | 20μA/0.6mA             |
| MR        | Master Reset inputs (active Low) | 1.0/1.0                | 20μA/0.6mA             |
| Q0a – Q3a | Port A outputs                   | 50/33                  | 1.0mA/20mA             |
| Q0b – Q3b | Port B outputs                   | 50/33                  | 1.0mA/20mA             |


#### NOTE:

One (1.0) FAST unit load is defined as:  $20\mu A$  in the High state and 0.6mA in the Low state.


## Dual addressable latch

74F256

#### **LOGIC SYMBOL**



#### **IEC/IEEE SYMBOL**

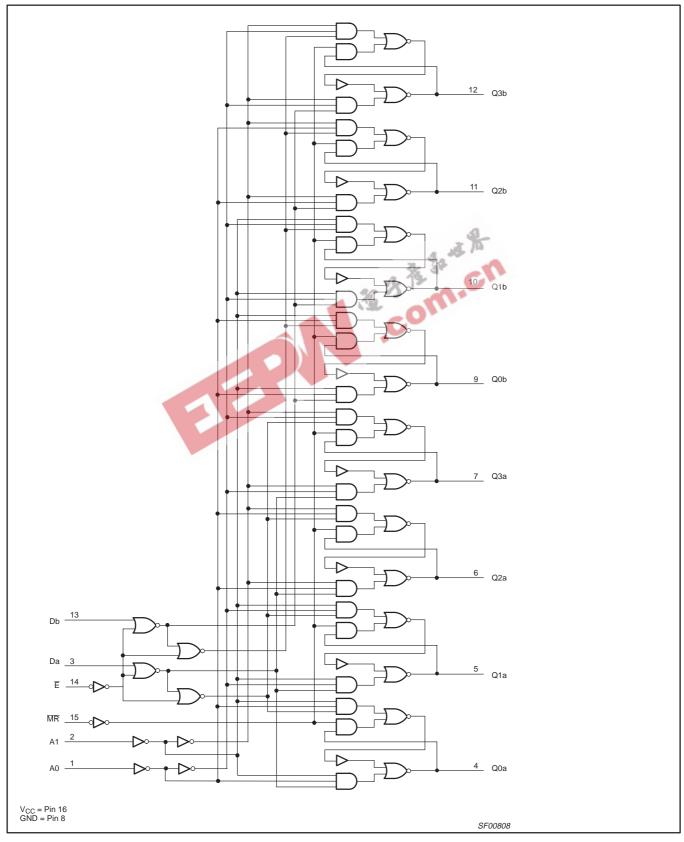


#### **FUNCTION TABLE**

|    |   | INPUTS |    |    |     | OUTP | UTS         | 0/1 | ODED ATING MODE                            |
|----|---|--------|----|----|-----|------|-------------|-----|--------------------------------------------|
| MR | Ē | D      | A0 | A1 | Q0  | Q1   | Q2 <b>Q</b> | Q3  | OPERATING MODE                             |
| L  | Н | Х      | Х  | Х  | L   | L    | L           | L   | Master Reset                               |
| L  | L | d      | L  | L  | Q=d | L Y  | L           | L   | Demultiplex (active-High decoder when D=H) |
| L  | L | d      | Н  | L  | L   | Q=d  | L           | L   |                                            |
| L  | L | d      | L  | Н  | L   | L    | Q=d         | L   |                                            |
| L  | L | d      | Н  | Н  | L   | L    | L           | Q=d |                                            |
| Н  | Н | Х      | X  | Х  | q0  | q1   | q2          | q3  | Store (do nothing)                         |
| Н  | L | d      | L  | L  | Q=d | q1   | q2          | q3  |                                            |
| н  | L | d      | н  | L  | q0  | Q=d  | q2          | q3  | Addressable Latch                          |
| н  | L | d      | L  | Н  | q0  | q1   | Q=d         | q3  | Addressable Lateri                         |
| н  | L | d      | н  | Н  | q0  | q1   | q2          | Q=d |                                            |

H =

High voltage levelLow voltage level L


X = Don't care

d = High or Low data one setup time prior to the Low-to-High Enable transition
q = Lower case letters indicate the state of the referenced output established during the last cycle in which it was addressed or cleared.

1988 Nov 29 3

74F256

## **LOGIC DIAGRAM**



#### Dual addressable latch

74F256

#### **ABSOLUTE MAXIMUM RATINGS**

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

| SYMBOL           | PARAMETER                                      | RATING                  | UNIT |
|------------------|------------------------------------------------|-------------------------|------|
| V <sub>CC</sub>  | Supply voltage                                 | -0.5 to +7.0            | V    |
| V <sub>IN</sub>  | Input voltage                                  | -0.5 to +7.0            | V    |
| I <sub>IN</sub>  | Input current                                  | -30 to +5               | mA   |
| V <sub>OUT</sub> | Voltage applied to output in High output state | −0.5 to V <sub>CC</sub> | V    |
| l <sub>OUT</sub> | Current applied to output in Low output state  | 40                      | mA   |
| T <sub>amb</sub> | Operating free-air temperature range           | 0 to +70                | °C   |
| T <sub>stg</sub> | Storage temperature range                      | -65 to +150             | °C   |

#### RECOMMENDED OPERATING CONDITIONS

| SYMBOL           | PARAMETER                            | 16 | 715 | LIMITS |     | UNIT |
|------------------|--------------------------------------|----|-----|--------|-----|------|
|                  | 2 3                                  | -  | MIN | NOM    | MAX |      |
| V <sub>CC</sub>  | Supply voltage                       | U. | 4.5 | 5.0    | 5.5 | V    |
| V <sub>IH</sub>  | High-level input voltage             |    | 2.0 |        |     | V    |
| V <sub>IL</sub>  | Low-level input voltage              |    |     |        | 0.8 | V    |
| I <sub>IK</sub>  | Input clamp current                  |    |     |        | -18 | mA   |
| I <sub>OH</sub>  | High-level output current            |    |     |        | -1  | mA   |
| I <sub>OL</sub>  | Low-level output current             |    |     |        | 20  | mA   |
| T <sub>amb</sub> | Operating free-air temperature range |    | 0   |        | 70  | °C   |

3

#### DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

| SYMBOL          | PARAMETER                                 | ·                | TEST                                         | ·                   |                  | LIMITS | ·    | UNIT |
|-----------------|-------------------------------------------|------------------|----------------------------------------------|---------------------|------------------|--------|------|------|
|                 |                                           |                  | CONDITIONS <sup>1</sup>                      | MIN                 | TYP <sup>2</sup> | MAX    |      |      |
| V <sub>OH</sub> | High-level output voltage                 |                  | $V_{CC} = MIN, V_{IL} = MAX,$                | ±10%V <sub>CC</sub> | 2.5              |        |      | V    |
|                 |                                           |                  | V <sub>IH</sub> = MIN, I <sub>OL</sub> = MAX | ±5%V <sub>CC</sub>  | 2.7              | 3.4    |      | V    |
| V <sub>OL</sub> | Low-level output voltage                  |                  | $V_{CC} = MIN, V_{IL} = MAX,$                | ±10%V <sub>CC</sub> |                  | 0.35   | 0.50 | V    |
|                 |                                           |                  | V <sub>IH</sub> = MIN, I <sub>OL</sub> = MAX | ±5%V <sub>CC</sub>  |                  | 0.35   | 0.50 | V    |
| V <sub>IK</sub> | Input clamp voltage                       |                  | $V_{CC} = MIN, I_I = I_{IK}$                 |                     |                  | -0.73  | -1.2 | V    |
| lį              | Input current at maximum input voltage    |                  | $V_{CC} = MAX, V_I = 7.0V$                   |                     |                  | 100    | μΑ   |      |
| I <sub>IH</sub> | High-level input current                  |                  | $V_{CC} = MAX, V_I = 2.7V$                   |                     |                  |        | 20   | μΑ   |
| I <sub>IL</sub> | Low-level input current                   |                  | $V_{CC} = MAX, V_I = 0.5V$                   |                     |                  |        | -0.6 | mA   |
| I <sub>OS</sub> | Short-circuit output current <sup>3</sup> |                  | V <sub>CC</sub> = MAX                        |                     | -60              |        | -150 | mA   |
| I <sub>CC</sub> | Supply current (total)                    | I <sub>CCH</sub> | V <sub>CC</sub> = MAX                        |                     |                  | 21     | 42   | mA   |
|                 |                                           | I <sub>CCL</sub> |                                              |                     |                  | 33     | 60   | mA   |

#### NOTES:

- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at  $V_{CC} = 5V$ ,  $T_{amb} = 25$ °C.
- 3. To reduce the effect of external noise during test.

<sup>4.</sup> Not more than one output should be shorted at a time. For testing I<sub>OS</sub>, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I<sub>OS</sub> tests should be performed last.

## Dual addressable latch

74F256

#### **AC ELECTRICAL CHARACTERISTICS**

|                                      |                               |                   |            |                                                                       | LIM         | IITS                                              |              |    |
|--------------------------------------|-------------------------------|-------------------|------------|-----------------------------------------------------------------------|-------------|---------------------------------------------------|--------------|----|
| SYMBOL                               | PARAMETER                     | TEST<br>CONDITION | \          | <sub>mb</sub> = +25<br>/ <sub>CC</sub> = +5\<br>0pF, R <sub>L</sub> = | /           | $T_{amb} = 0^{\circ}C$ $V_{CC} = +5$ $C_L = 50pF$ | UNIT         |    |
|                                      |                               |                   | MIN        | TYP                                                                   | MAX         | MIN                                               | MAX          |    |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay<br>Dn to Qn | Waveform 2        | 4.0<br>3.0 | 7.0<br>5.0                                                            | 9.5<br>7.0  | 4.0<br>2.5                                        | 10.0<br>7.5  | ns |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay E to Qn     | Waveform 1        | 4.5<br>3.0 | 8.0<br>5.0                                                            | 10.5<br>7.0 | 4.5<br>3.0                                        | 12.0<br>7.5  | ns |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay<br>An to Qn | Waveform 3        | 5.0<br>4.5 | 10.0<br>8.5                                                           | 14.0<br>9.5 | 5.0<br>4.0                                        | 14.5<br>10.0 | ns |
| t <sub>PHL</sub>                     | Propagation delay MR to Qn    | Waveform 4        | 5.0        | 7.0                                                                   | 9.0         | 4.5                                               | 10.0         | ns |

#### **AC SETUP REQUIREMENTS**

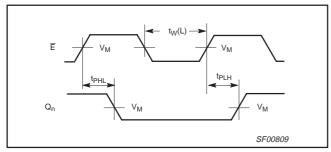
| AC SETU                                  | PREQUIREMENTS                                                 |                   |                                                        | 4    | 3   |            |     |    |  |
|------------------------------------------|---------------------------------------------------------------|-------------------|--------------------------------------------------------|------|-----|------------|-----|----|--|
| SYMBOL                                   | PARAMETER                                                     | TEST<br>CONDITION | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |      |     |            |     |    |  |
| t <sub>s</sub> (H)                       | Setup time, High or Low<br>Dn to E                            | Waveform 5        | 3.0<br>6.5                                             | 1117 | MAX | 3.0<br>7.0 | MAX | ns |  |
| t <sub>h</sub> (H)                       | Hold time, High or Low<br>Dn to E                             | Waveform 5        | 0                                                      |      |     | 0          |     | ns |  |
| t <sub>s</sub> (H)<br>t <sub>s</sub> (L) | Setup time, High o <mark>r Low</mark><br>An to E <sup>1</sup> | Waveform 6        | 2.0<br>2.0                                             |      |     | 2.0<br>2.0 |     | ns |  |
| t <sub>h</sub> (H)<br>t <sub>h</sub> (L) | Hold time, High or Low<br>An to $\overline{\mathbb{E}}^2$     | Waveform 6        | 0                                                      |      |     | 0<br>0     |     | ns |  |
| t <sub>w</sub> (L)                       | E Pulse width, Low                                            | Waveform 1        | 7.5                                                    |      |     | 8.0        |     | ns |  |
| t <sub>w</sub> (L)                       | MR Pulse width, Low                                           | Waveform 4        | 3.0                                                    |      |     | 3.0        |     | ns |  |

#### NOTES:

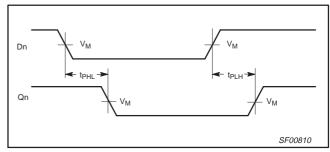
1988 Nov 29 6

<sup>1.</sup> The Address to Enable setup time is the time before the High-to-Low Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

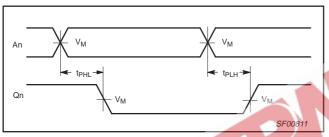
<sup>2.</sup> The Address to Enable hold time is the time before the Low-to-High Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.


## Dual addressable latch

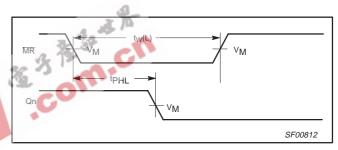
74F256


#### **AC WAVEFORMS**

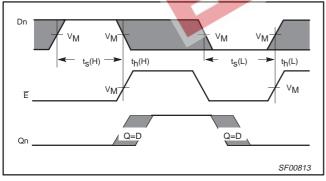
For all waveforms,  $V_M = 1.5V$ .


The shaded areas indicate when the input is permitted to change for predictable output performance.

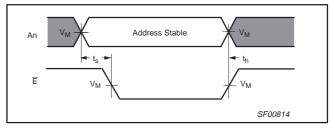



Waveform 1. Propagation Delay, Enable Input to Output, Enable Pulse Width




Waveform 2. Propagation Delay, Data to Output



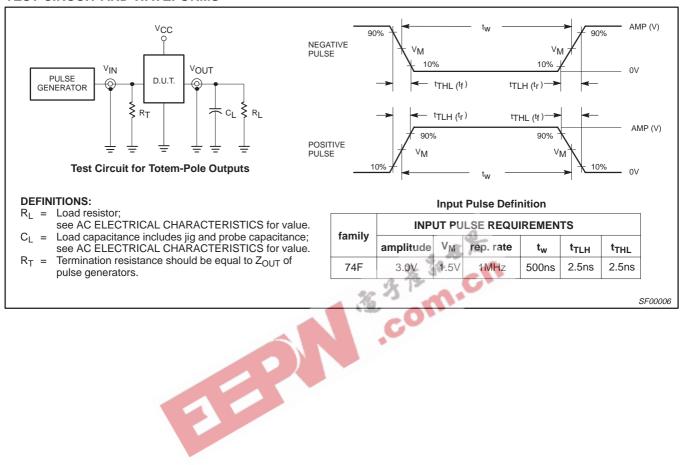

Waveform 3. Propagation Delay Address to Output



Waveform 4. Master Reset Pulse Width and Master Reset to Output Delay



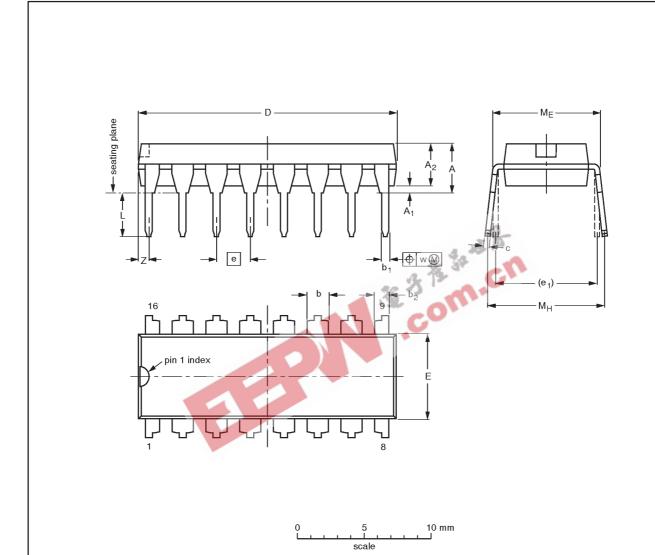
Waveform 5. Data Setup and Hold Times




Waveform 6. Address Setup and Hold Times

## Dual addressable latch

74F256


#### **TEST CIRCUIT AND WAVEFORMS**



74F256

## DIP16: plastic dual in-line package; 16 leads (300 mil)

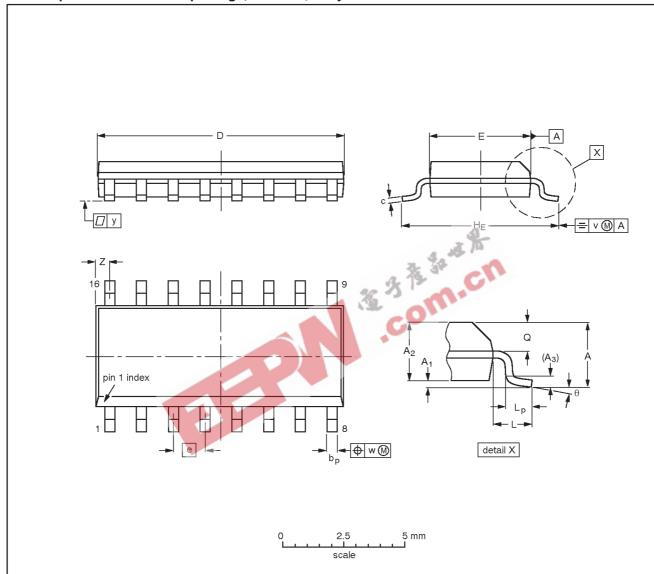
SOT38-4



#### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT   | A<br>max. | A <sub>1</sub><br>min. | A <sub>2</sub><br>max. | b              | b <sub>1</sub> | b <sub>2</sub> | С              | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | e <sub>1</sub> | L            | ME           | M <sub>H</sub> | w     | Z <sup>(1)</sup><br>max. |
|--------|-----------|------------------------|------------------------|----------------|----------------|----------------|----------------|------------------|------------------|------|----------------|--------------|--------------|----------------|-------|--------------------------|
| mm     | 4.2       | 0.51                   | 3.2                    | 1.73<br>1.30   | 0.53<br>0.38   | 1.25<br>0.85   | 0.36<br>0.23   | 19.50<br>18.55   | 6.48<br>6.20     | 2.54 | 7.62           | 3.60<br>3.05 | 8.25<br>7.80 | 10.0<br>8.3    | 0.254 | 0.76                     |
| inches | 0.17      | 0.020                  | 0.13                   | 0.068<br>0.051 | 0.021<br>0.015 | 0.049<br>0.033 | 0.014<br>0.009 | 0.77<br>0.73     | 0.26<br>0.24     | 0.10 | 0.30           | 0.14<br>0.12 | 0.32<br>0.31 | 0.39<br>0.33   | 0.01  | 0.030                    |

#### Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE |     | REFER | ENCES | EUROPEAN   | ISSUE DATE                      |
|---------|-----|-------|-------|------------|---------------------------------|
| VERSION | IEC | JEDEC | EIAJ  | PROJECTION | ISSUE DATE                      |
| SOT38-4 |     |       |       |            | <del>92-11-17</del><br>95-01-14 |

74F256

## SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1



#### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT   | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp           | С            | D <sup>(1)</sup> | E <sup>(1)</sup> | е     | HE             | L     | Lp             | Q              | v    | w    | у     | Z <sup>(1)</sup> | θ  |
|--------|-----------|----------------|----------------|----------------|--------------|--------------|------------------|------------------|-------|----------------|-------|----------------|----------------|------|------|-------|------------------|----|
| mm     | 1.75      | 0.25<br>0.10   | 1.45<br>1.25   | 0.25           | 0.49<br>0.36 | 0.25<br>0.19 | 10.0<br>9.8      | 4.0<br>3.8       | 1.27  | 6.2<br>5.8     | 1.05  | 1.0<br>0.4     | 0.7<br>0.6     | 0.25 | 0.25 | 0.1   | 0.7<br>0.3       | 8° |
| inches | 0.069     | 0.010<br>0.004 | 0.057<br>0.049 | 0.01           |              |              | 0.39<br>0.38     | 0.16<br>0.15     | 0.050 | 0.244<br>0.228 | 0.041 | 0.039<br>0.016 | 0.028<br>0.020 | 0.01 | 0.01 | 0.004 | 0.028<br>0.012   | 0° |

#### Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

| OUTLINE  | REFERENCES |          |      |  | EUROPEAN   | ISSUE DATE                      |
|----------|------------|----------|------|--|------------|---------------------------------|
| VERSION  | IEC        | JEDEC    | EIAJ |  | PROJECTION | ISSUE DATE                      |
| SOT109-1 | 076E07S    | MS-012AC |      |  |            | <del>95-01-23</del><br>97-05-22 |

## Dual addressable latch

74F256

#### **NOTES**



#### Dual addressable latch

74F256

#### Data sheet status

| Data sheet status         | Product status | Definition [1]                                                                                                                                                                                                                                             |
|---------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective specification   | Development    | This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.                                                                                                          |
| Preliminary specification | Qualification  | This data sheet contains preliminary data, and supplementary data will be published at a later date.  Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product. |
| Product specification     | Production     | This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.                                                       |

<sup>[1]</sup> Please consult the most recently issued datasheet before initiating or completing a design.

#### **Definitions**

**Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

**Application information** — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### **Disclaimers**

**Life support** — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

**Right to make changes** — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 10-98

Document order number: 9397-750-05106

Let's make things better.





