

November 1999 Revised August 2003

74VCXH16244

Low Voltage 16-Bit Buffer/Line Driver with Bushold

General Description

The VCXH16244 contains sixteen non-inverting buffers with 3-STATE outputs to be employed as a memory and address driver, clock driver, or bus oriented transmitter/ receiver. The device is nibble (4-bit) controlled. Each nibble has separate 3-STATE control inputs which can be shorted together for full 16-bit operation.

The VCXH16244 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

The 74VCXH16244 is designed for low voltage (1.2V to 3.6V) V_{CC} applications with output capability up to 3.6V.

The 74VCXH16244 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

- 1.2V to 3.6V V_{CC} supply operation
- 3.6V tolerant control inputs and outputs
- Bushold on data inputs eliminating the need for external pull-up/pull-down resistors
- t_{PD}

2.5 ns max for 3.0V to 3.6V $V_{\rm CC}$

■ Static Drive (I_{OH}/I_{OL})

±24 mA @ 3.0V V_{CC}

- Uses patented noise/EMI reduction circuitry
- Latch-up performance exceeds 300 mA
- ESD performance:

Human body model > 2000V

Machine model > 200V

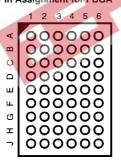
 Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA) (Preliminary)


Ordering Code:

Order Number	Package Number	Package Description
74VCXH16244G (Note 1)(Note 2)	BGA54A (Preliminary)	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
74VCXH16244MTD (Note 2)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 1: Ordering Code "G" indicates Tray

Note 2: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Logic Symbol

Connection Diagrams

Pin Assignment for TSSOP ŌĒ₁ -00 -- I₀ 0, -GND -— GND 02 -**-** 1₂ 03 v_{cc} -04 -- I₄ 05 -39 GND -— GND 38 07 -36 35 09 -— I₉ — GND GND -010-33 - _۱۱0 32 — I_{1 1} 011-3 1 V_{CC} -18 — v_{сс} 012 — I₁₂ 29 20 013-- ب_{ا 3} GND -28 — GND 27 - I₁₄ 014-015-26 — I₁₅

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
\overline{OE}_n	Output Enable Input (Active LOW)
I ₀ -I ₁₅	Bushold Inputs
I ₀ -I ₁₅ O ₀ -O ₁₅	Outputs
NC	No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	O ₀	NC	ŌE ₁	OE ₂	NC	I ₀
В	02	O ₁	NC	NC	I ₁	l ₂
С	O ₄	O ₃	V _{CC}	V _{CC}	I ₃	I ₄
D	O ₆	O ₅	GND	GND	I ₅	I ₆
E	Ο ₈	07	GND	GND	I ₇	I ₈
F	O ₁₀	O ₉	GND	GND	l ₉	I ₁₀
G	O ₁₂	O ₁₁	V _{CC}	V _{CC}	I ₁₁	I ₁₂
Н	O ₁₄	O ₁₃	NC	NC	I ₁₃	I ₁₄
J/L	O ₁₅	NC (OE ₄	ŌE ₃	NC	I ₁₅

Truth Tables

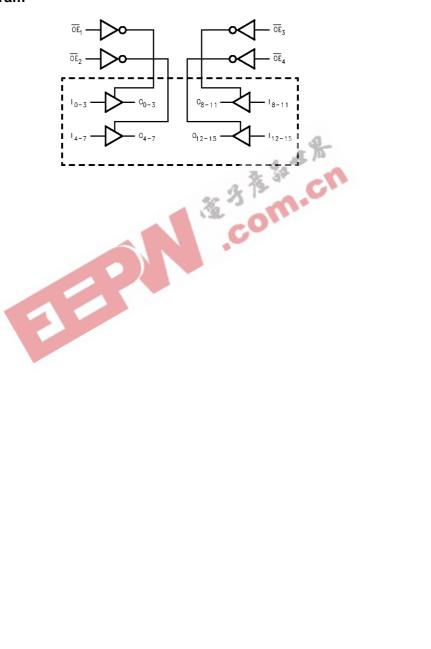
Inputs		Outputs
OE ₁	I ₀ -I ₃	O ₀ -O ₃
L	L	L
L	Н	Н
Н	X	Z

Inputs		Outputs
OE ₂	I ₄ -I ₇	O ₄ -O ₇
L	L	L
L	Н	Н
Н	Χ	Z

Inputs		Outputs
OE ₃	I ₈ -I ₁₁	O ₈ -O ₁₁
L	L	L
L	Н	Н
Н	Χ	Z

Inputs		Outputs
ŌE ₄	l ₁₂ -l ₁₅	O ₁₂ -O ₁₅
L	L	L
L	Н	Н
Н	X	Z

H = HIGH Voltage Level


X = Immaterial (HIGH or LOW, inputs may not float)
Z = High Impedance

Functional Description

The 74VCXH16244 contains sixteen non-inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of each other. The control pins may be shorted together to obtain full 16-bit operation. The 3-STATE out-

puts are controlled by an Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW, the outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the inputs.

Logic Diagram

Absolute Maximum Ratings(Note 3)

Recommended Operating

Supply voltage (V _{CC})	-0.5V to $+4.6V$
DC Input Voltage (V _I)	-0.5V to $+4.6V$
Output Voltage (V _O)	
Outputs 3-STATED	-0.5V to $+4.6V$
Outputs Active (Note 4)	$-0.5V$ to V_{CC} +0.5V
DC Input Diode Current (I_{IK}) $V_I < 0V$	−50 mA
DC Output Diode Current (I _{OK})	

-50 mA $V_O < 0V$ +50 mA $V_O > V_{CC}$

Supply Pin (I_{CC} or GND) ±100 mA Storage Temperature Range (T_{STG}) -65°C to +150°C

DC Output Source/Sink Current ±50 mA (I_{OH}/I_{OL}) DC V_{CC} or GND Current per

Conditions (Note 5) Power Supply

Operating 1.2V to 3.6V Input Voltage -0.3V to +3.6V

Output Voltage (V_O) Output in Active States 0.0V to V_{CC} Output in 3-STATE 0.0V to 3.6V

Output Current in I_{OH}/I_{OL} $V_{CC} = 3.0V$ to 3.6V+24 mA $V_{CC} = 2.3V$ to 2.7V±18 mA $V_{CC} = 1.65V \text{ to } 2.3V$ ±6 mA

 $V_{CC} = 1.4V \text{ to } 1.6V$ ±2 mA $V_{CC}=1.2V\,$ ±100 μA Free Air Operating Temperature (T_A) -40°C to +85°C

Minimum Input Edge Rate (Δt/ΔV)

 $V_{\rm IN} = 0.8V \ to \ 2.0V, \ V_{\rm CC} = 3.0V$ 10 ns/V Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The Recommended Operating Conditions' table will define the conditions for actual device operation.

Note 4: I_O Absolute Maximum Rating must be observed.

Note 5: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.7 - 3.6	2.0		
			2.3 - 2.7	1.6		
			1.65 - 2.3	0.65 x V _{CC}		V
			1.4 - 1.6	0.65 x V _{CC}		
			1.2	0.65 x V _{CC}		
V _{IL}	LOW Level Input Voltage		2.7 - 3.6		0.8	
			2.3 - 2.7		0.7	
			1.65 - 2.3		0.35 x V _{CC}	V
			1.4 - 1.6		0.35 x V _{CC}	
			1.2		0.05 x V _{CC}	
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu\text{A}$	2.7 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		
		$I_{OH} = -100 \mu\text{A}$	2.3 - 2.7	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
		$I_{OH} = -12 \text{ mA}$	2.3	1.8		V
		$I_{OH} = -18 \text{ mA}$	2.3	1.7		
		$I_{OH} = -100 \mu\text{A}$	1.65 - 2.3	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	1.65	1.25		
		$I_{OH} = -100 \mu\text{A}$	1.4 - 1.6	V _{CC} - 0.2		
		$I_{OH} = -2 \text{ mA}$	1.4	1.05		
		$I_{OH} = -100 \mu\text{A}$	1.2	V _{CC} - 0.2		

DC Electrical Characteristics (Continued)

Symbol	Parameter		Conditions	v _{cc} (v)	Min	Max	Units
V _{OL}	LOW Level Output Voltage		I _{OL} = 100 μA	2.7 - 3.6		0.2	
			I _{OL} = 12 mA	2.7		0.4	
			I _{OL} = 18 mA	3.0		0.4	
			I _{OL} = 24 mA	3.0		0.55	
			I _{OL} = 100 μA	2.3 - 2.7		0.2	
			I _{OL} = 12 mA	2.3		0.4	.,
			I _{OL} = 18 mA	2.3		0.6	V
			I _{OL} = 100 μA	1.65 - 2.3		0.2	
			I _{OL} = 6 mA	1.65		0.3	
			I _{OL} = 100 μA	1.4 - 1.6		0.2	
			$I_{OL} = 2 \text{ mA}$	1.4		0.35	
			$I_{OL} = 100 \mu\text{A}$	1.2		0.05	
I _I	Input Leakage Current	Control Pins	$0 \le V_I \le 3.6V$	1.2 - 3.6		±5.0	μА
		Data Pins	$V_I = V_{CC}$ or GND	1.2 - 3.6	4	±5.0	μΑ
I _{I(HOLD)}	Bushold Input Minimum		$V_{IN} = 0.8V$	3.0	7 5.0		
	Drive Hold Current		V _{IN} = 2.0V	3.0	-75.0		
			V _{IN} = 0.7V	2.3	45.0		
			V _{IN} = 1.6V	2.3	-45 .0		μА
			V _{IN} = 0.57V	1.65	25.0		
			V _{IN} = 1.07V	1.65	-25.0		
I _{I(OD)}	Bushold Input Over-Drive		(Note 6)	3.6	450		
	Current to Change State		(Note 7)	3.6	-450		
			(Note 6)	2.7	300		μА
			(Note 7)	2.7	-300		μА
			(Note 6)	1.95	200		
			(Note 7)	1.95	-200		
l _{OZ}	OZ 3-STATE Output Leakage		0 ≤ V _O ≤ 3.6V	2.7 - 3.6		±10.0	μА
			$V_I = V_{IH}$ or V_{IL}	2.7 - 3.0		±10.0	μΛ
I _{OFF}	Power-OFF Leakage Current		0 ≤ (V _O) ≤ 3.6V	0		10.0	μΑ
I _{CC}	Quiescent Supply Current		$V_I = V_{CC}$ or GND	1.2 - 3.6		20.0	μА
			$V_{CC} \le (V_O) \le 3.6V \text{ (Note 8)}$	1.2 - 3.6		±20.0	μА
ΔI_{CC}	Increase in I _{CC} per Input		$V_{IH} = V_{CC} - 0.6V$	2.7 - 3.6		750	μΑ

Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

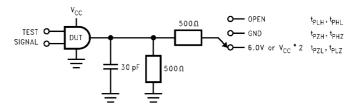
Note 8: Outputs disabled or 3-STATE only.

AC Electrical Characteristics (Note 9)

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Figure
Syllibol	Farameter	Conditions	(V)	Min	Max	Oilles	Number
t _{PHL}	Propagation Delay	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.8	2.5		
t _{PLH}			2.5 ± 0.2	1.0	3.0		Figures 1, 2
			1.8 ± 0.15	1.5	6.0	ns	-,-
		$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$	1.5 ± 0.1	1.0	12.0		Figures
			1.2	1.5	30.0		5, 6
t _{PZL}	Output Enable Time	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.8	3.5		
t _{PZH}			2.5 ± 0.2	1.0	4.1		Figures 1, 3, 4
			1.8 ± 0.15	1.5	8.2	ns	., 0, .
		$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$	1.5 ± 0.1	1.0	16.4		Figures
			1.2	1.5	41.0		5, 7, 8
t _{PLZ}	Output Disable Time	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.8	3.5		
t_{PHZ}			2.5 ± 0.2	1.0	3.8		Figures 1, 3, 4
			1.8 ± 0.15	1.5	6.8	ns	1, 2,
		$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$	1.5 ± 0.1	1.0	13.6		Figures
			1.2	1.5	34.0		5, 7, 8
toshl	Output to Output Skew	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	五月	0.5		
toslh	(Note 10)		2.5 ± 0.2		0.5		
			1.8 ± 0.15		0.75	ns	
		$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$	1.5 ± 0.1		1.5	1	
		350	1.2	1.	1.5	1	

Note 9: For C_L = 50_PF, add approximately 300 ps to the AC maximum specification.

Note 10: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = +25^{\circ}C$	Units
		Conditions	(V)	Typical	Omis
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.25	
			2.5	0.6	V
			3.3	0.8	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.25	
			2.5	-0.6	V
			3.3	-0.8	
V _{OHV}	Quiet Output Dynamic Valley V _{OH}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.5	
			2.5	1.9	V
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	$\mathbf{T_A} = +25^{\circ}\mathbf{C}$	Units
Cymbol			Typical	
C _{IN}	Input Capacitance	$V_{CC} = 1.8, 2.5 V \text{ or } 3.3 V, V_I = 0 V \text{ or } V_{CC}$	6.0	pF
C _{OUT}	Output Capacitance	$V_I = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	7.0	pF
C _{PD}	Power Dissipation Capacitance	$V_{I} = 0V \text{ or } V_{CC}, f = 10 \text{ MHz}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	20.0	pF

AC Loading and Waveforms (V $_{CC}$ 3.3V \pm 0.3V to 1.8V \pm 0.15V)

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at V $_{CC}$ = 3.3 \pm 0.3V; V $_{CC}$ x 2 at V $_{CC}$ = 2.5 \pm 0.2V; 1.8V \pm 0.15V
t_{PZH}, t_{PHZ}	GND

FIGURE 1. AC Test Circuit

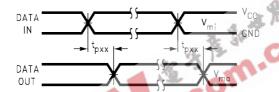


FIGURE 2. Waveform for Inverting and Non-Inverting Functions

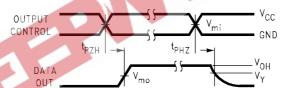


FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

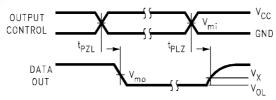
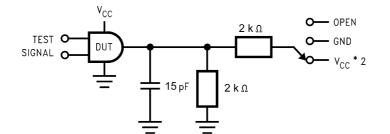



FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	V _{cc}		
Cymbol	$3.3V \pm 0.3V$	2.5V ± 0.2V	1.8V ± 0.15V
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2
V _X	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V
V_{Y}	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V

AC Loading and Waveforms (V $_{CC}$ 1.5 \pm 0.1V to 1.2V)

t_{PZH}, t_{PHZ}

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t_{PZL}, t_{PLZ}	V_{CC} x 2 at $V_{CC} = 1.5 \pm 0.1 V$
t_{PZH}, t_{PHZ}	GND

FIGURE 5. AC Test Circuit

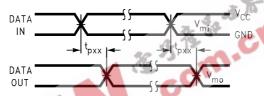


FIGURE 6. Waveform for Inverting and Non-Inverting Functions

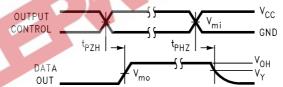


FIGURE 7. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

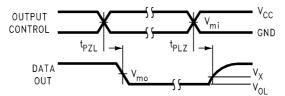
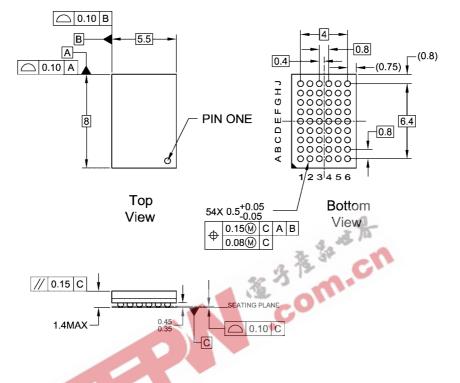



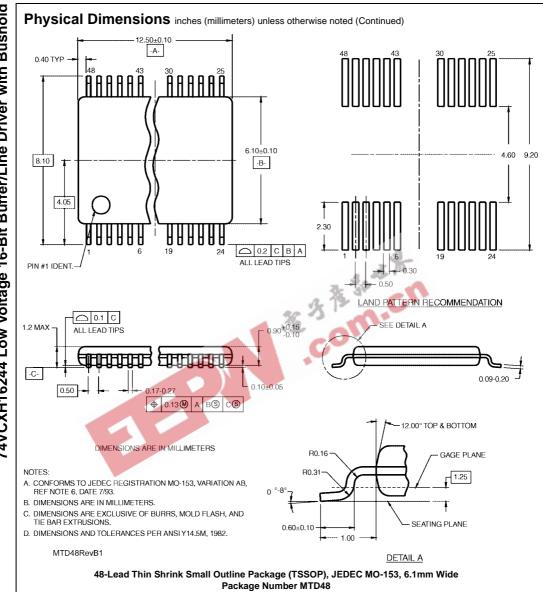
FIGURE 8. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	V _{CC}	
Cymbol	1.5V ± 0.1V	
V _{mi}	V _{CC} /2	
V _{mo}	V _{CC} /2	
V _X	V _{OL} + 0.1V	
V _Y	V _{OH} – 0.1V	

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:

- A. THIS PACKAGE CONFORMS TO JEDEC M0-205


 B. ALL DIMENSIONS IN MILLIMETERS

 C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
 .35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS

 D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD

54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA54A Preliminary

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com