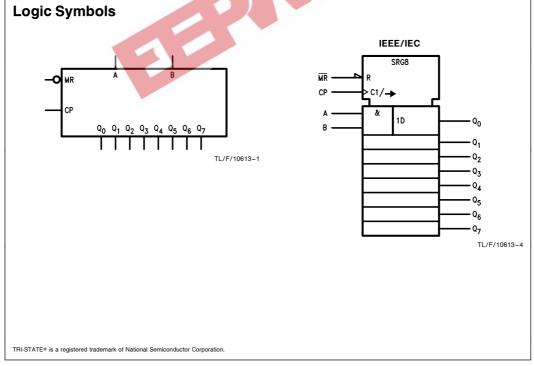
National Semiconductor

54F/74F164A Serial-In, Parallel-Out Shift Register

General Description

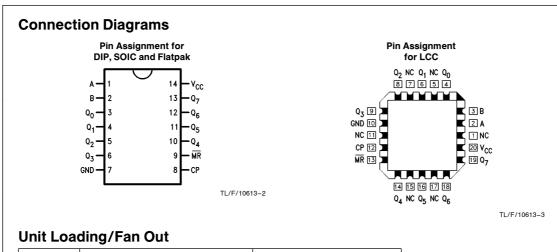
The 'F164A is a high-speed 8-bit serial-in/parallel-out shift register. Serial data is entered through a 2-input AND gate synchronous with the LOW-to-HIGH transition of the clock. The device features an asynchronous Master Reset which clears the register, setting all outputs LOW independent of the clock. The 'F164A is a faster version of the 'F164.

January 1995


54F/74F164A Serial-In, Parallel-Out Shift Register

Features

- Typical shift frequency of 90 MHz
- Asynchronous Master Reset
- Gated serial data input
- Fully synchronous data transfers
- Guaranteed 4000V min ESD protection
- 'F164A is a faster version of the 'F164


Commercial	Military	Package Number	Package Description				
74F164APC		N14A	14-Lead (0.300" Wide) Molded Dual-In-Line				
	54F164ADM (Note 2)	J14A	14-Lead Ceramic Dual-In-Line				
74F164ASC (Note 1)		M14A	14-Lead (0.150" Wide) Molded Small Outline, JEDEC				
74F164ASJ (Note 1)		M14D	14-Lead (0.300" Wide) Molded Small Outline, EIAJ				
	74F164AFM (Note 2)	W14B	14-Lead Cerpack				
	74F164ALM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C				
Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.							

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

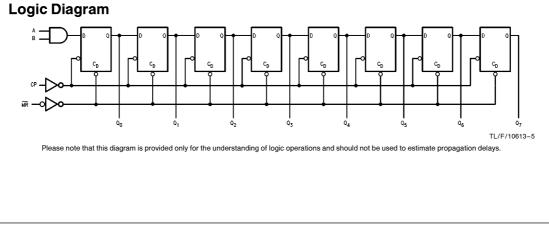
©1995 National Semiconductor Corporation TL/F/10613

RRD-B30M75/Printed in U. S. A.

		54		
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}	
A, B	Data Inputs	1.0/1.0	20 µA/-0.6 mA	-
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 µA/−0.6 mA	, A P
MR	Master Reset Input (Active LOW)	1.0/1.0	20 µA/-0.6 mA	2.3
Q0-Q7	Outputs	50/33.3	-1 mA/20 mA	
Function	al Description		36.3	m.

Functional Description

The 'F164A is an edge-triggered 8-bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B); either of these inputs can be used as an active HIGH Enable for data entry through the other input. An unused input must be tied HIGH.


Each LOW-to-HIGH transition on the Clock (CP) input shifts data one place to the right and enters into Q0 the logical AND of the two data inputs (A \bullet B) that existed before the rising clock edge. A LOW level on the Master Reset ($\overline{\text{MR}}$) input overrides all other inputs and clears the register asynchronously, forcing all Q outputs LOW.

Operating		nputs	Outputs		
Mode	MR	Α	в	Q ₀	Q ₁ -Q ₇
Reset (Clear)	L	х	Х	L	L-L
	н	Ι	Ι	L	q ₀ -q ₆
Shift	н	I	h	L	q ₀ -q ₆
Shift	н	h	I	L	q ₀ -q ₆
	н	h	h	н	q ₀ -q ₆

H(h) = HIGH Voltage Levels L(I) = LOW Voltage Levels

X = Immaterial

x = immatenai q_n = Lower case letters indicate the state of the referenced input or output one setup time prior to the LOW-to-HIGH clock transition.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Office/Distributors for availabilit	ly and specifications.
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias Plastic	−55°C to +175°C −55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output in HIGH State (with V _{CC} = 0V)	
Standard Output	-0.5V to V _{CC}
TRI-STATE® Output	-0.5V to +5.5V
Current Applied to Output in LOW State (Max)	twice the rated I _{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature Military Commercial

-55°C to +125°C $0^{\circ}C$ to $\,+\,70^{\circ}C$

Supply Voltage Commercial

A

Vcc

Min

Units

V

۷

Military

+ 4.5V to + 5.5V + 4.5V to + 5.5V

Conditions

Recognized as a HIGH Signal

Recognized as a LOW Signal

 $I_{\text{IN}}=\,-\,18\,\text{mA}$

ESD Last Passing Voltage (Min)	4000V				
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under					
these conditions is not implied.					

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Parameter

DC Electrical Characteristics

Input HIGH Voltage

Input LOW Voltage

Input Clamp Diode Voltage

Symbol

 V_{IH}

 V_{IL}

 V_{CD}

00								
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$
V_{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$ All other pins grounded
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All other pins grounded
Ι _{ΙL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OS}	Output Short-Circuit C	urrent	-60		-150	mA	Max	$V_{OUT} = 0V$
I _{CC}	Power Supply Current			35	55	mA	Max	$\frac{CP}{MR} = HIGH$ $\frac{MR}{MR} = GND, A, B = GND$

54F/74F

Тур

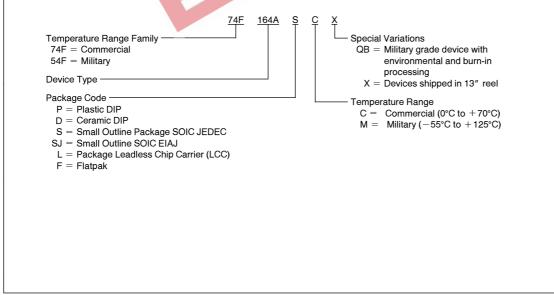
Max 18.2

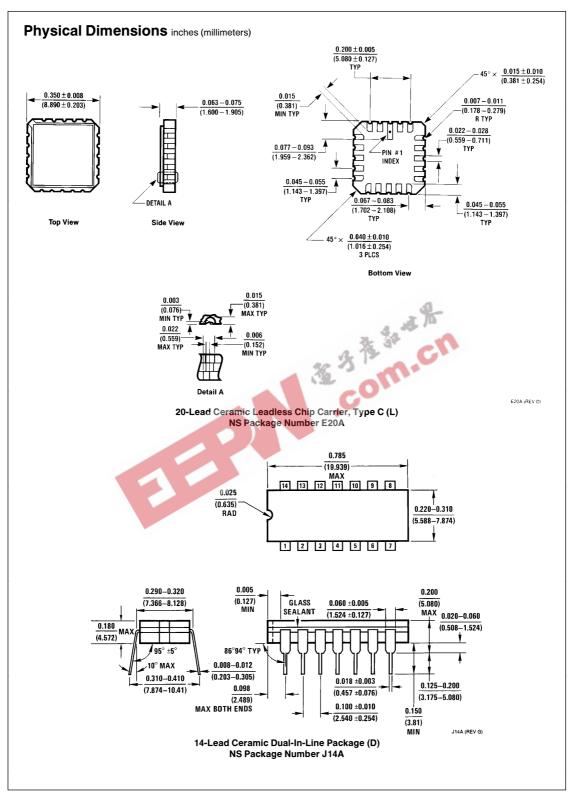
0.8

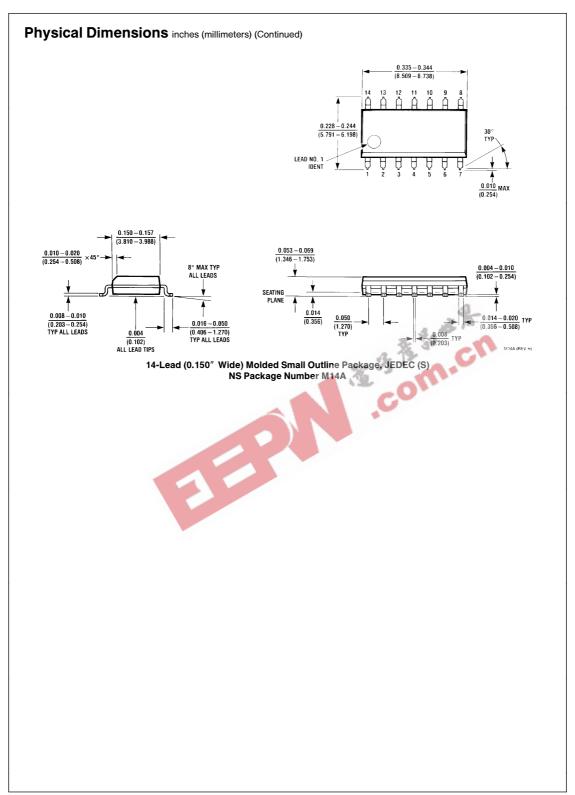
-1.2

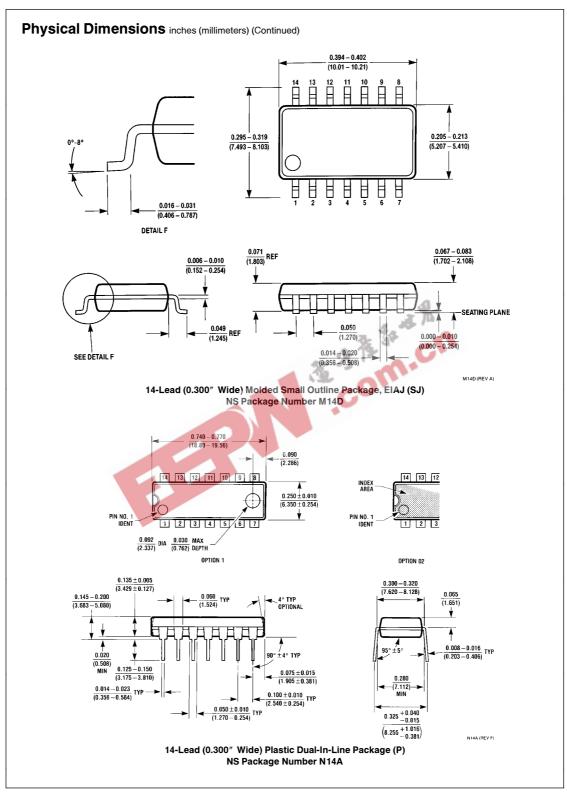
Min

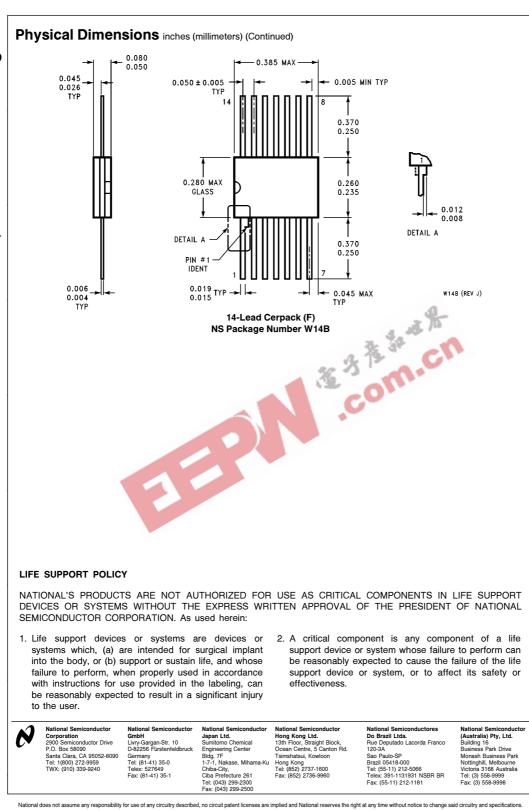
2.0


AC Electrical Characteristics										
		$74F \\ T_{A} = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_{L} = 50 \text{ pF}$			$54F$ $T_{A}, V_{CC} = Mil$ $C_{L} = 50 \text{ pF}$		$74F$ $T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$		Units	
Symbol	Parameter									
		Min	Тур	Мах	Min	Мах	Min	Мах		
f _{max}	Maximum Clock Frequency	80	120		60		80		MHz	
t _{PLH} t _{PHL}	Propagation Delay CP to Q _n	3.0 3.5	4.8 5.0	7.5 8.0	2.5 3.0	9.0 8.5	3.0 3.5	7.5 8.0	ns	
t _{PHL}	Propagation Delay MR to Q _n	5.0	7.0	10.0	4.0	12.5	5.0	10.5	ns	


AC Operating Requirements


		$74F$ $T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		5	54F	74F T _A , V _{CC} = Com		Units
Symbol	Parameter			T _A , V _C	c = Mil			
		Min	Max	Min	Max	Min	Мах	
t _s (H) t _s (L)	Setup Time, HIGH or LOW A or B to CP	4.5 4.0		5.5 4.0		4.5 4.0		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW A or B to CP	1.0 1.0		1.0 1.0	小な	1.0 1.0	1	113
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	4.0 7.0		4.0 7.0		4.0 7.0		ns
t _w (L)	MR Pulse Width, LOW	4.0		5.0	6	4.0		ns
t _{rec}	Recovery Time MR to CP	5.0		6.5		5.0		ns


Ordering Information


The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

