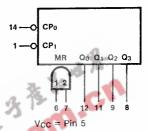

54/7492A 54LS/74LS92

DIVIDE-BY-TWELVE COUNTER

CONNECTION DIAGRAM PINOUT A



DESCRIPTION — The '92 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divide-by-six. HIGH signals on the Master Reset (MR) inputs override the clocks and force all outputs to the LOW state.

ORDERING CODE: See Section 9

OUDEVIN	a cob	E. Occ Occiton o		
	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS	OUT	V _{CC} = +5.0 V ±5%, T _A = 0°C to +70°C		
Plastic DIP (P)	А	7492APC, 74LS92PC		9A
Ceramic DIP (D)	А	7492ADC, 74LS92DC	5492ADM, 54LS92DM	6A
Flatpak (F)	А	7492AFC, 74LS92FC	5492AFM, 54LS92FM	31

LOGIC SYMBOL

V_{CC} = Pin 5 GND = Pin 10 NC = Pins 2, 3, 4, 13

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW	
CP ₀	÷2 Section Clock Input (Active Falling Edge)	2.0/2.0	0.125/1.5	
Ĉ₽ ₁	÷6 Section Clock Input (Active Falling Edge)	3.0/3.0	0.250/2.0	
MR ₁ , MR ₂	Asynchronous Master Reset Input (Active HIGH)	1.0/1.0	0.5/0.25	
Q ₀	÷2 Section Output*	20/10	10/5.0 (2.5)	
Q ₁ Q ₃	÷6 Section Outputs	20/10	10/5.0 (2.5)	

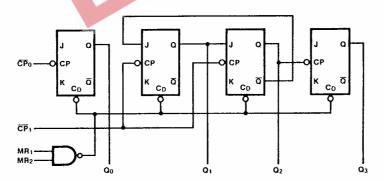
*The Q0 output is guaranteed to drive the full rated fan-out plus the $\overline{\mbox{CP}}_1$ input.

FUNCTIONAL DESCRIPTION — The '92 is a 4-bit ripple type divide-by-twelve counter. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divideby-six section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q_0 output of each device is designed and specified to drive the rated fan-out plus the \overline{CP}_1 input of the device. A gated AND asynchronous Master Reset (MR1, MR2) is provided which overrides the clocks and resets (clears) all the flip-flops. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes:

- A. Modulo 12, Divide-By-Twelve Counter The \overline{CP}_1 input must be externally connected to the Q_0 output. The \overline{CP}_0 input receives the incoming count and Q_3 produces a symmetrical divide-by-twelve square wave output.
- B. Divide-By-Two and Divide-By-Six Counter No external interconnections are required. The first flipflop is used as a binary element for the divide-by-two function. The $\overline{\mathbb{CP}_1}$ input is used to obtain divide-by-three operation at the Q₁ and Q₂ outputs and divide-by-six operation at the Q₃ output.

MODE SELECTION TABLE

RE INPL	SET JTS		OUT	rput	s	
MR ₁ MR ₂		Q ₀	Qı	Q ₂	Q ₃	
Н	Н	L	L	L	L	
L	Н	Count				
H	L	Count				
L	L	Count				


H = HIGH Voltage Level L = LOW Voltage Level

TRUTH TABLE

COUNT	OUTPUT					
	Qo	Q ₁	Q ₂	Q ₃		
0	L	L	L	L		
1	Н	L	L	L		
2 3	Ĺ	Н	L	L L		
3	Н	H	L	L		
4	gL d	亂	H_	L		
5	Н	L	H	L		
6	L	4	L	Н		
7 7	H	L	L	Н		
8	L,	Н	L	Н		
9	Н	Н	L	Н		
10	L	L	Н	Н		
11	Н	L	Н	Н		

NOTE: Output Q₀ connected to \overline{CP}_1

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)							
SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS
	FANAMEIEN	Min	Max	Min	Max		
Гін	Input HIGH Current, CPo		1.0		0.2	mA	$V_{CC} = Max$, $V_{IN} = 5.5 V$
lін	Input HIGH Current, CP1		1.0		0.4	mA	V _{CC} = Max, V _{IN} = 5.5 V
lcc	Power Supply Current		39		15	mA	Vcc = Max

AC CHARACTERISTICS: V_{CC} = 5.0 V, T_A = 25°C (See Section 3 for waveforms and load configurations)

		7 -4/24	54/741.0		
SYMBOL	PARAMETER	54/74 C _L = 15 pF R _L = 400 Ω	54/74LS C _L = 15 pF	UNITS	CONDITIONS
		Min Max	Min Max		
f _{max}	Maximum Count Frequency, CP ₀ Input	32	32	MHz	Figs. 3-1, 3-9
f _{max}	Maximum Count Frequency, CP ₁ Input	16	16	MHz	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₀ to Q ₀	16 18	16 18	ns	Figs. 3-1, 3-9
tplH tpHL	Propagation Delay CP ₀ to Q ₃	48 50	48 50	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₁ to Q ₁	16 21	16 21	ns	Figs. 3- 1, 3-9
tplH tpHL	Propagation Delay CP ₁ to Q ₂	16 21	16 21	ns	Figs. 3-1, 3-9
tplH tpHL	Propagation Delay CP ₁ to Q ₃	32 35	32 35	ns	Figs. 3-1, 3-9
tPHL	Propagation Delay, MR to Qn	40	40	ns	Figs. 3-1, 3-17

AC OPERATING REQUIREMENTS: VCC = 5.0 V, TA = 25°C

OVMBOL	PARAMETER		54/74	54/74LS	UNITS	CONDITIONS
SYMBOL	PARAMETER	N	lin Max	Min Max		
t _w (H)	CP ₀ Pulse Width HIGH		15	15	ns	Fig. 3-9
t _w (H)	CP ₁ Pulse Width HIGH		30	30	ns	
tw (H)	MR Pulse Width HIGH		15	15	ns	Fig. 3-17
t _{rec} Recovery Time, MR to CF			25	25	ns	