

September 2000 Revised August 2001

74LCXZ16244

Low Voltage 16-Bit Buffer/Line Driver with 5V Tolerant Inputs and Outputs

General Description

The LCXZ16244 contains sixteen non-inverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Each nibble has separate 3-STATE control inputs which can be shorted together for full 16-bit operation.

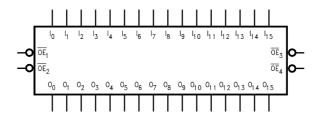
When V_{CC} is between 0 and 1.5V, the LCXZ12644 is in the high impedance state during power up or power down. This places the outputs in high impedance (Z) state preventing intermittent low impedance loading or glitching in bus oriented applications.

The LCXZ16244 is designed for low voltage (2.7V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment.

The LCXZ16244 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

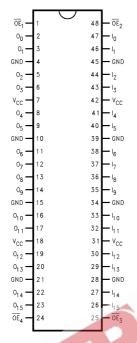
Features

- 5V tolerant inputs and outputs
- Guaranteed power up/down high impedance
- Supports live insertion/withdrawal
- \blacksquare 2.7V–3.6V $\rm V_{CC}$ specifications provided
- \blacksquare 4.5 ns t_{PD} max (V_{CC} = 3.0V), 20 μ A I_{CC} max
- \blacksquare ±24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:
 - Human body model > 2000V
 - Machine model > 200V
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA) (Preliminary)

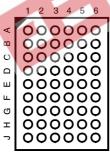

Ordering Code:

Order Number	Package Number	Package Description
74LCXZ16244GX (Note 1)	BGA54A (Preliminary)	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide [TAPE and REEL]
74LCXZ16244MEA (Note 2)	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LCXZ16244MTD (Note 2)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 1: BGA package available in Tape and Reel only


Note 2: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Logic Symbol



Connection Diagrams

Pin Assignment for SSOP and TSSOP

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
\overline{OE}_n	Output Enable Input (Active LOW)
OE _n I ₀ -I ₁₅ O ₀ -O ₁₅	Inputs
O ₀ -O ₁₅	Outputs
NC	No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	O ₀	NC	OE ₁	OE ₂	NC	I ₀
В	O ₂	0 ₁	NC	NC	I ₁	l ₂
С	O ₄	O ₃	O ₃ V _{CC} V _{CC}		l ₃	I ₄
D	O ₆	O ₅	GND	GND GND I ₅		I ₆
E	O ₈	07	GND	D GND I ₇		I ₈
F	O ₁₀	O ₉	GND	GND	l ₉	I ₁₀
G	0 ₁₂	O ₁₁	V_{CC}	V _{CC}	I ₁₁	I ₁₂
Н	O ₁₄	O ₁₃	NC	NC	I ₁₃	I ₁₄
J/s	O ₁₅	NC	OE ₄	ŌE ₃	NC	I ₁₅

Truth Tables

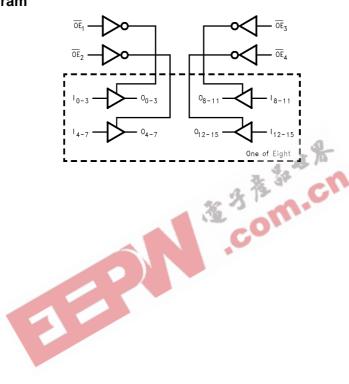
inp	Outputs	
OE ₁ I ₀ -I ₃		O ₀ -O ₃
L	L	L
L	Н	Н
Н	X	Z

Inp	uts	Outputs
OE ₂	I ₄ –I ₇	O ₄ -O ₇
L	L	L
L	Н	Н
Н	X	Z

Inp	outs	Outputs
OE ₃	I ₈ –I ₁₁	O ₈ -O ₁₁
L	L	L
L	Н	Н
Н	X	Z

Inp	uts	Outputs
OE ₄	I ₁₂ -I ₁₅	O ₁₂ -O ₁₅
L	L	L
L	Н	Н
Н	X	Z

H = HIGH Voltage Level L = LOW Voltage Level


X = Immaterial Z = High Impedance

Functional Description

The LCXZ16244 contains sixteen non-inverting buffers with 3-STATE standard outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. The

3-STATE outputs are controlled by an Output Enable (\overline{OE}_n) input for each nibble. When \overline{OE}_n is LOW, the outputs are in 2-state mode. When \overline{OE}_n is HIGH, the outputs are in the high impedance mode, but this does not interfere with entering new data into the inputs.

Logic Diagram

 I_{CC}

 I_{GND}

 $\mathsf{T}_{\mathsf{STG}}$

Absolute Maximum Ratings(Note 3) Symbol Parameter Value Conditions Units Supply Voltage -0.5 to +7.0 DC Input Voltage -0.5 to +7.0 ٧ Output in 3-STATE or $V_{CC} = 0-1.5V$ DC Output Voltage -0.5 to +7.0 ٧ Output in HIGH or LOW State (Note 4) -0.5 to $V_{CC} + 0.5$ DC Input Diode Current -50 V_I < GND mΑ -50 V_O < GND DC Output Diode Current mΑ +50 $V_{O} > V_{CC}$ DC Output Source/Sink Current ±50 mΑ I_{O}

±100

±100

-65 to +150

mΑ

mΑ

Recommended Operating Conditions (Note 5)

DC Supply Current per Supply Pin

Storage Temperature

DC Ground Current per Ground Pin

Symbol	Parameter			Max	Units
V _{CC}	Supply Voltage	Operating	2.7	3.6	V
VI	Input Voltage	4,4	0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE or V _{CC} = OFF	0	5.5	V
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$	-	±24	mA
		$V_{CC} = 2.7V - 3.0V$		±12	IIIA
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: I_O Absolute Maximum Rating must be observed.

Note 5: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	
Зушьог	Farameter	Conditions	(V)	Min Max		Units	
V _{IH}	HIGH Level Input Voltage		2.7 – 3.6	2.0		V	
V _{IL}	LOW Level Input Voltage		2.7 – 3.6		0.8	V	
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu\text{A}$	2.7 – 3.6	V _{CC} - 0.2			
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V	
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		V	
		$I_{OH} = -24 \text{ mA}$	3.0	2.2			
/ _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7 – 3.6		0.2		
		$I_{OL} = 12 \text{ mA}$	2.7		0.4	V	
		$I_{OL} = 16 \text{ mA}$	3.0		0.4	•	
		$I_{OL} = 24 \text{ mA}$	3.0		0.55		
I	Input Leakage Current	$0 \le V_I \le 5.5V$	2.7 – 3.6		±5.0	μΑ	
OZ	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.7 – 3.6		±5.0	μА	
		$V_I = V_{IH}$ or V_{IL}	2.7 - 3.0		±3.0	μΑ	
OFF	Power-Off Leakage Current	V_I or $V_O = 5.5V$	0		10	μΑ	
PU/PD	Power Up/Down	$V_O = 0.5V$ to V_{CC}	0 – 1.5		±5.0	μА	
	3-STATE Output Current	$V_I = GND \text{ or } V_{CC}$	0 - 1.5		±3.0	μΑ	
СС	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.7 – 3.6		225	μА	
		$3.6V \le V_I, V_O \le 5.5V \text{ (Note 6)}$ $2.7 - 3.6$ \pm		±225	μл		
∆l _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7 – 3.6		500	μΑ	

Note 6: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

		TA	0 Ω			
Symbol	Parameter		$V_{CC} = 3.3V \pm 0.3V$		V _{CC} = 2.7V	
	Faranteter	C _L = 50 pF		C _L = 50 pF		Units
		Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.0	4.5	1.0	5.2	ns
t _{PLH}	Data to Output	1.0	4.5	1.0	5.2	115
t _{PZL}	Output Enable Time	1.0	5.5	1.0	6.3	ns
t _{PZH}		1.0	5.5	1.0	6.3	115
t _{PLZ}	Output Disable Time	1.0	5.4	1.0	5.7	ns
t_{PHZ}		1.0	5.4	1.0	5.7	115
toshl	Output to Output Skew (Note 7)		1.0			ns
t _{OSLH}			1.0			113

Note 7: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = 25°C	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V

Capacitance

Symbol	Parameter			Conditions	Typical	Units
C _{IN}	Input Capacitance		V _{CC} :	= Open, $V_I = 0V$ or V_{CC}	7	pF
C _{OUT}	Output Capacitance		V _{CC} :	= 3.3V, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance		Vcc	$= 3.3 \text{V}, \text{ V}_{\text{I}} = 0 \text{V or V}_{\text{CC}}, \text{f} = 10 \text{ MHz}$	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

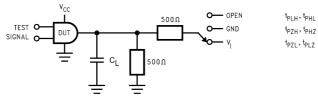
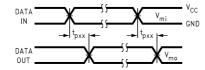



FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)

V _I	CL
6V for V _{CC} = 3.3V, 2.7V	50 pF

OUTPUT CONTROL

TPZH

Vmi

GND

VoH

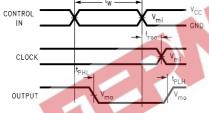
VoH

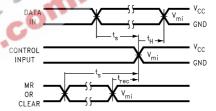
Vy

VoH

Vy

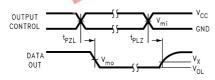
VoH

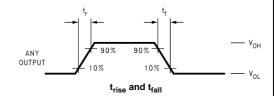

Vy


VoH

Vy

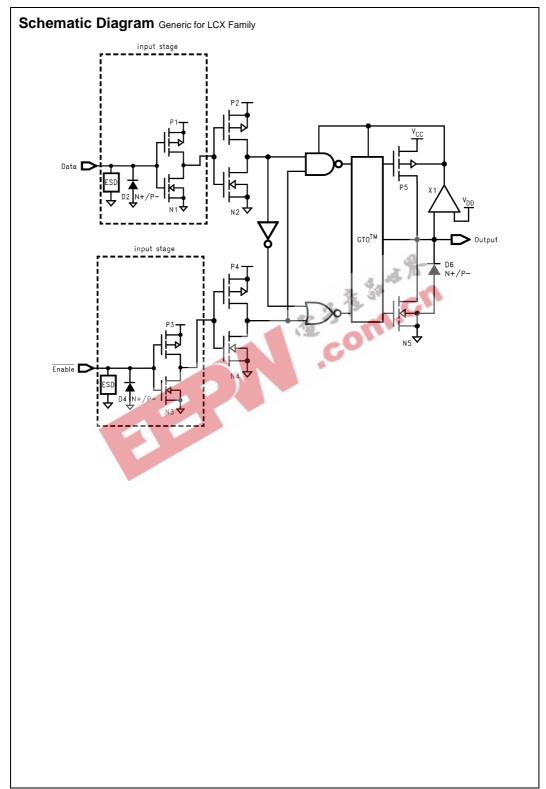
Waveform for Inverting and Non-Inverting Functions


3-STATE Output High Enable and Disable Times for Logic



Propagation Delay. Pulse Width and trec Waveforms

Setup Time, Hold Time and Recovery Time for Logic



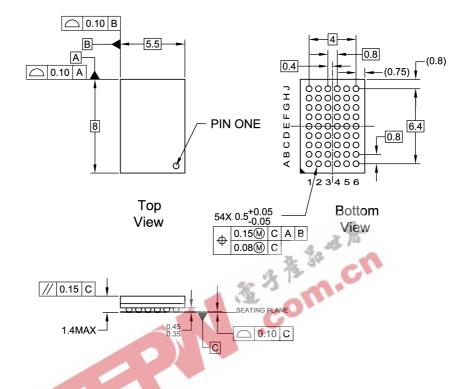

3-STATE Output Low Enable and Disable Times for Logic

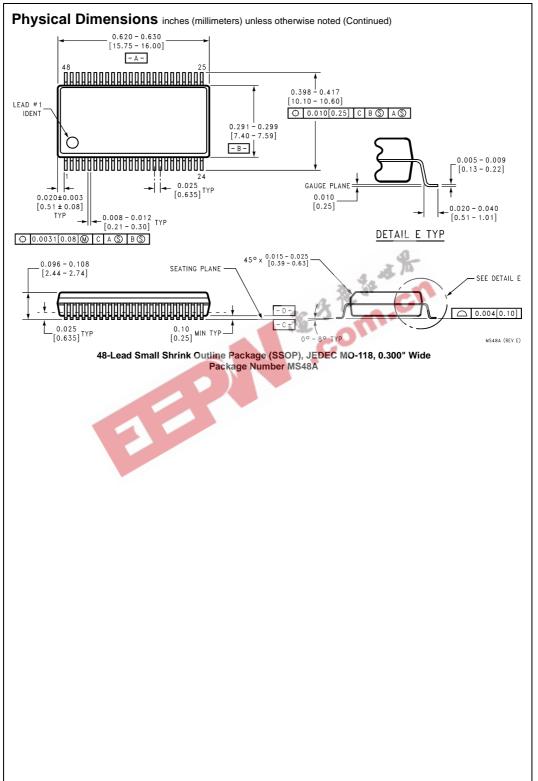
FIGURE 2. Waveforms (Input Characteristics; f = 1 MHz, $t_r = t_f = 3$ ns)

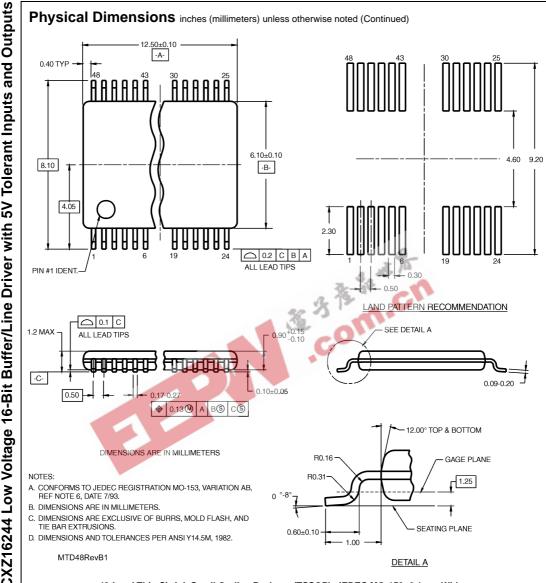
Symbol	V _{CC}	
	$3.3V \pm 0.3V$	2.7V
V _{mi}	1.5V	1.5V
V _{mo}	1.5V	1.5V
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V
V_y	V _{OH} – 0.3V	V _{OH} – 0.3V

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:

- A. THIS PACKAGE CONFORMS TO JEDEC M0-205


 B. ALL DIMENSIONS IN MILLIMETERS


 C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
 .35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS

 D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD

54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA54A Preliminary

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com