INTEGRATED CIRCUITS

DATA SHEET

74F14Hex inverter Schmitt trigger

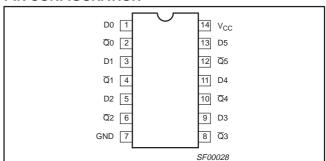
Product specification

1990 Nov 26

IC15 Data Handbook

74F14

FEATURE


• Industrial temperature range available (-40°C to +85°C)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F14	5.0ns	18mA

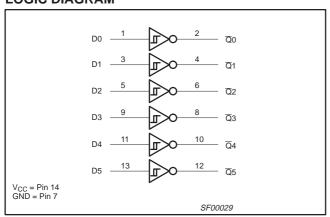
DESCRIPTION

The 74F14 contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter free output signals. In addition, they have greater noise margin than conventional inverters. Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive-going and negative-going input threshold (typically 800mV) is determined internally by resistor ratios and is insensitive to temperature and supply voltage variations.

PIN CONFIGURATION

ORDERING INFORMATION

		ORDER CODE							
DESCRIPTION	COMMERCIAL RANGE V _{CC} = 5V ±10%, T _{amb} = 0°C to +70°C	INDUSTRIAL RANGE V _{CC} = 5V ±10%, T _{amb} = -40°C to +85°C	PKG DWG #						
14-pin plastic DIP	N74F14N	I74F14N	SOT27-1						
14-pin plastic SO	N74F14D	I74F14D	SOT108-1						


INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

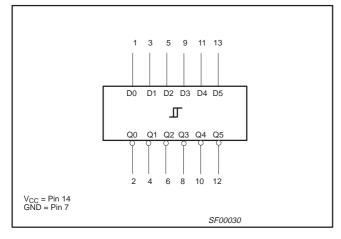
PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
Dn	Data inputs	1.0/1.0	20μA/0.6mA
Qn	Data output	50/33	1.0mA/20mA

NOTE

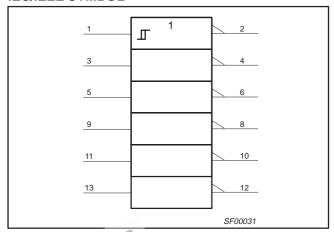
1 One (1.0) FAST unit load is defined as: $20\mu A$ in the High state and 0.6mA in the Low state.

LOGIC DIAGRAM

FUNCTION TABLE


INPUTS	OUTPUT					
Dn	Qn					
L	Н					
Н	L					

NOTES:


H = High voltage levelL = Low voltage level

74F14

LOGIC SYMBOL

IEC/IEEE SYMBOL

(Operation beyond the limits set forth in this table may impair the useful life of the device.

Unless otherwise noted these limits are over the operating free-air temperature source.

SYMBOL	PARAMETER		RATING	UNIT
V _{CC}	Supply voltage	CO.	-0.5 to +7.0	V
V _{IN}	Input voltage		-0.5 to +7.0	V
I _{IN}	Input current		-30 to +5	mA
V _{OUT}	Voltage applied to output in high output state		−0.5 to V _{CC}	V
I _{OUT}	Current applied to output in low output state		40	mA
т	Operating free oir temperature range	Commercial range	0 to +70	°C
T _{amb}	Operating free-air temperature range	Industrial range	-40 to +85	°C
T _{stg}	Storage temperature range		-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER			LIMITS		UNIT
			MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5.0	5.5	V	
V _{IH}	High-level input voltage	2.0			V	
V _{IL}	Low-level input voltage			0.8	V	
I _{lk}	Input clamp current				-18	mA
I _{OH}	High-level output current				-1	mA
I _{OL}	Low-level output current				20	mA
_		Commercial range	0		+70	°C
T _{amb}	Operating free air temperature range	Industrial range	-40		+85	°C

74F14

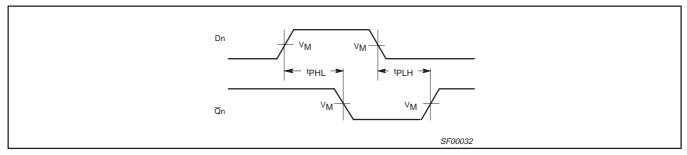
DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITION	NS ¹		LIMITS		UNIT
					MIN	TYP ²	MAX	
V _{T+}	Positive-going threshold		V _{CC} = 5.0V	1.4	1.7	2.0	V	
V _T _	Negative-going threshold		V _{CC} = 5.0V		0.7	0.9	1.1	V
ΔV_{T}	Hysteresis (V _{T+} – V _{T-})		V _{CC} = 5.0V		0.4	0.8		V
V _{OH}	High-level output voltage		$V_{CC} = MIN, V_I = V_{T-MIN},$	±10%V _{CC}	2.5			V
			I _{OH} = MAX	±5%V _{CC}	2.7	3.4		V
V _{OL}	Low-level output voltage		$V_{CC} = MIN, V_I = V_{T+MAX},$	±10%V _{CC}		0.30	0.50	V
			$I_{OL} = MAX$		0.30	0.50	V	
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$		-0.73	-1.2	V	
I _{T+}	Input current at positive-going thre	shold	$V_{CC} = 5.0V, V_I = V_{T+}$			0		μΑ
I _T _	Input current at negative-going thr	eshold	$V_{CC} = 5.0V, V_I = V_{T-}$	4		-175		μΑ
I _I	Input current at maximum input vo	ltage	$V_{CC} = MAX, V_I = 7.0V$	3,15/	(A)		100	μΑ
I _{IH}	High-level input current		$V_{CC} = MAX, V_I = 2.7V$	30	10		20	μА
I _{IL}	Low-level input current		$V_{CC} = MAX, V_1 = 0.5V$				-0.6	mA
Ios	Short-circuit output current ³		$V_{CC} = MAX$	0/11	-60		-150	mA
Icc	Supply current (total)	I _{CCH}	$V_{CC} = MAX$	V _{IN} = GND		13	22	mA
		ICCL	V _{CC} = MAX	V _{IN} = 4.5V		23	32	mA

AC ELECTRICAL CHARACTERISTICS

				LIMITS							
SYMBOL PARAMETER		TEST CONDITION	V_{CC} = +5.0V T_{amb} = +25°C C_L = 50pF, R_L = 500 Ω				0V ± 10% C to +70°C R _L = 500Ω	$V_{CC} = +5.$ $T_{amb} = -40^{\circ}$ $C_{L} = 50pF$	UNIT		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX		
t _{PLH} t _{PHL}	Propagation delay Dn to Qn	Waveform 1	4.0 3.5	6.5 5.0	8.5 6.5	4.0 3.5	9.5 7.0	3.0 3.5	10.5 9.0	ns	

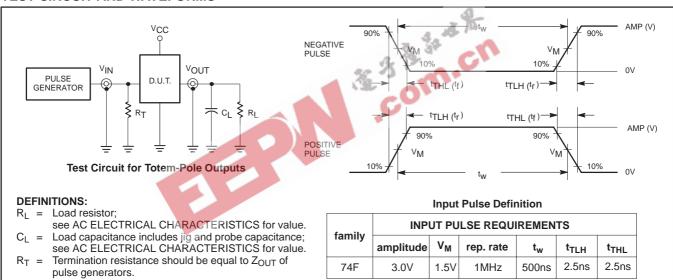

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. All typical values are at $V_{CC} = 5V$, $T_{amb} = 25$ °C. Not more than one output should be shorted at a time. For testing I_{OS} , the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

Philips Semiconductors Product specification

Hex inverter Schmitt trigger

74F14

AC WAVEFORMS



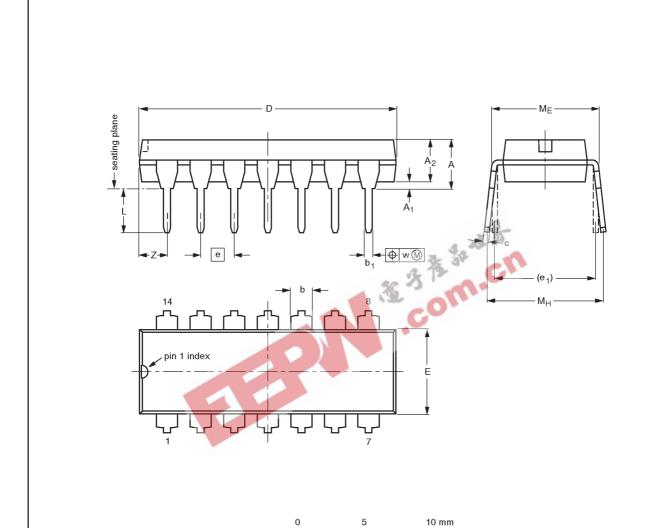
Waveform 1. Propagation delay for inverting outputs

NOTE:

For all waveforms, $V_M = 1.5V$.

TEST CIRCUIT AND WAVEFORMS

SF00006


Philips Semiconductors Product specification

Hex inverter Schmitt trigger

74F14

DIP14: plastic dual in-line package; 14 leads (300 mil)

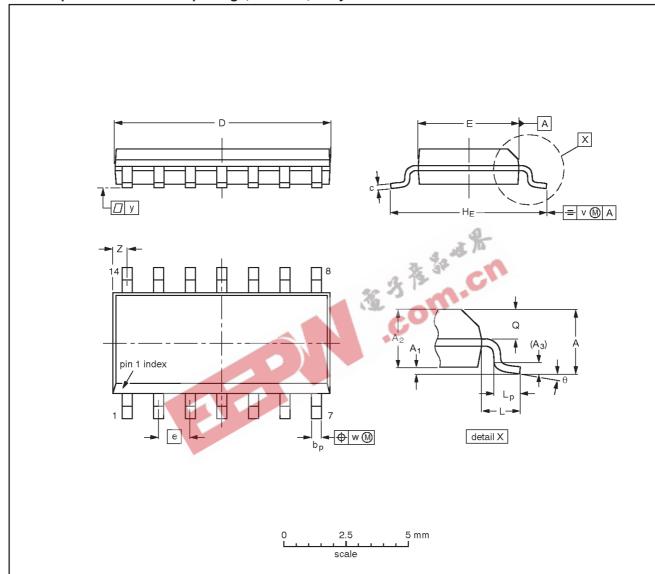
SOT27-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	M _E	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC		PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001AA				92-11-17 95-03-11

1990 Nov 26 6

74F14

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.35 0.34	0.16 0.15	0.050	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT108-1	076E06S	MS-012AB			95-01-23 97-05-22

1990 Nov 26 7

Philips Semiconductors Product specification

Hex inverter Schmitt trigger

74F14

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 10-98

Document order number: 9397-750-05057

Let's make things better.

