

April 1988 Revised September 2000

74F377

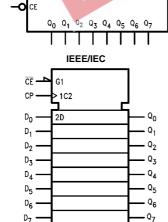
Octal D-Type Flip-Flop with Clock Enable

General Description

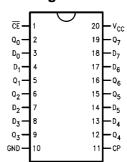
The 74F377 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously, when the Clock Enable $(\overline{\text{CE}})$ is LOW.

The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. The $\overline{\text{CE}}$ input must be stable only one setup time prior to the LOW-to-HIGH clock transition for predictable operation.

Features


- Ideal for addressable register applications
- Clock enable for address and data synchronization applications
- Eight edge-triggered D-type flip-flops
- Buffered common clock
- See 74F273 for master reset version
- See 74F373 for transparent latch version
- See 74F374 for 3-STATE version

Ordering Code:


Order Number	Package Number	Package Description
74F377SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F377SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F377PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP) JEDEC MS-001 0 300 Wide

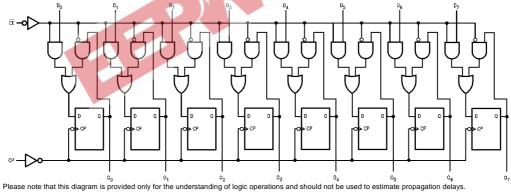
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" tot he ordering code.

Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
D ₀ –D ₇	Data Inputs	1.0/1.0	20 μA/-0.6 mA	
CE	Clock Enable (Active LOW)	1.0/1.0	20 μA/-0.6 mA	
CP	Clock Pulse Input	1.0/1.0	20 μA/-0.6 mA	
Q ₀ -Q ₇	Data Outputs	50/33.3	-1 mA/20 mA	


Mode Select-Function Table

		Output			
Operating Mode	СР	CP CE D _n		Q _n	
Load "1"	~	I	h	Н	
Load "0"	~	I	I	L	
Hold	~	h	X	No Change	
(Do Nothing)	Х	Н	X	No Change	

- H = HIGH Voltage Level
 h = HIGH Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition
 L = LOW Voltage Level
 I = LOW Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition
 X = Immaterial

 T = LOW-to-HIGH Clock Transition

Logic Diagram

Absolute Maximum Ratings(Note 1)

-65°C to +150°C

Storage Temperature Ambient Temperature under Bias -55°C to +125°C Junction Temperature under Bias -55°C to +150°C

V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

–0.5V to $V_{\mbox{\footnotesize CC}}$ Standard Output 3-STATE Output -0.5V to +5.5V

Current Applied to Output

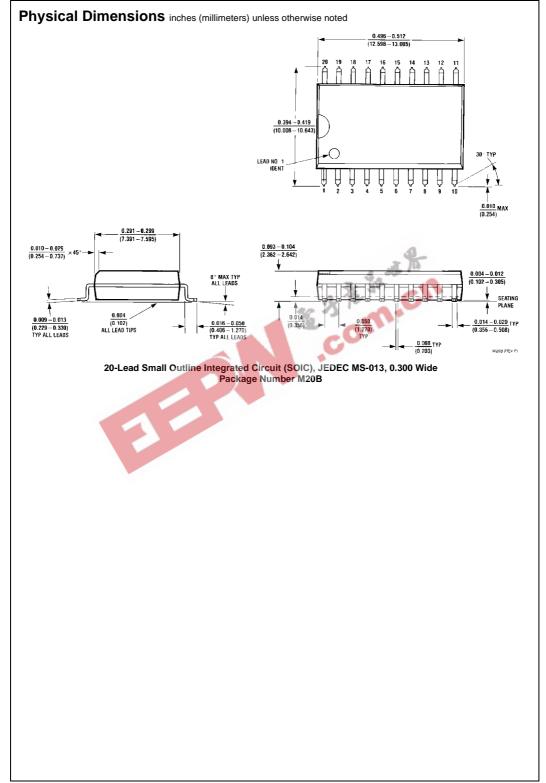
twice the rated I_{OL} (mA) in LOW State (Max) ESD Last Passing Voltage (Min)

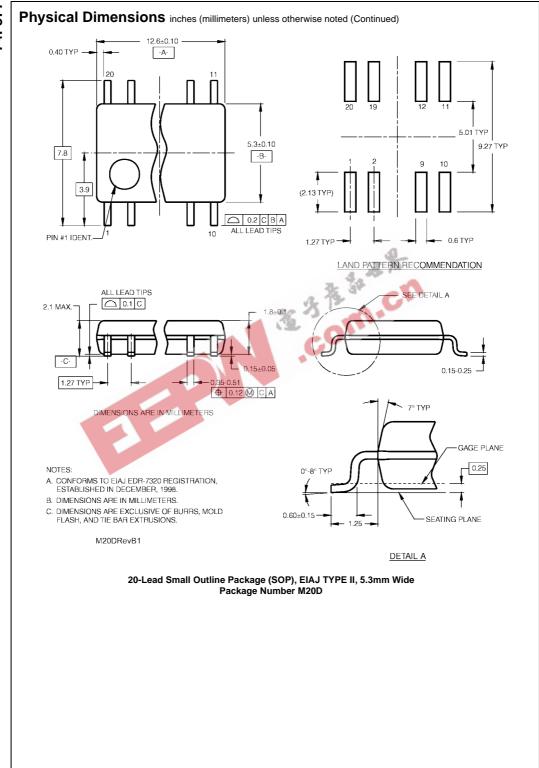
Recommended Operating Conditions

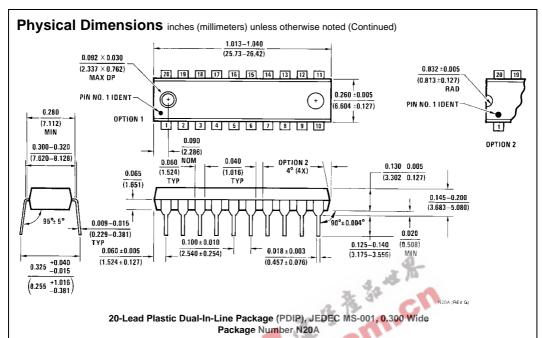
Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

3_


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter	Min	Тур	Max	Units	V _{CC}	Conditions		
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal		
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal		
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA		
V _{OH}	Output HIGH 10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA		
	Voltage 5% V _{CC}	2.7		-	O. J.	IVIII I	$I_{OH} = -1 \text{ mA}$		
V _{OL}	Output LOW Voltage 10% V _{CC}	, T		0.5	V	Min	I _{OL} = 20 mA		
I _{IH}	Input HIGH Current		, ,	5.0	μΑ	Max	V _{IN} = 2.7V		
I _{BVI}	Input HIGH Current	. 1		7.0	μА	Max	V _{IN} = 7.0V		
	Breakdown Test			7.0	μА	IVIAX	V _{IN} = 7.0 V		
I _{IL}	Input LOW Current			-0.6	mA	Max	$V_{IN} = 0.5V$		
Ios	Output Short-Circuit Current	-60		-150	mA	Max	$V_{OUT} = 0V$		
I _{CEX}	Output HIGH Leakage Current			50	μΑ	Max	$V_{OUT} = V_{CC}$		
V _{ID} Inpu	Input Leakage	4.75			٧	0.0	$I_{ID} = 1.9 \mu\text{A}$		
	Test	4.73					All Other Pins Grounded		
I _{OD}	Output Leakage			3.75		0.0	V _{IOD} = 150 mV		
	Circuit Current			3.75	μА	0.0	All Other Pins Grounded		
I _{CCH}	Power Supply Current		35	46	mA	Max	CP =		
I _{CCL}			44	56	IIIA	IVIAX	$D_n = \overline{MR} = HIGH$		

AC E	ectrical Character	istics							
Symbol	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = -55$ °C to +125°C $V_{CC} = +5.0V$ $C_L = 50$ pF		$T_A = 0$ °C to $+70$ °C $V_{CC} = +5.0V$ $C_L = 50$ pF	
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	130			85		105		MHz
t _{PLH}	Propagation Delay	3.0		7.0	2.0	8.5	2.5	7.5	no
t _{PHL}	CP to Q _n	4.0		9.0	3.0	10.5	3.5	9.0	ns

AC Operating Requirements

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the

A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com