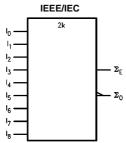


April 1988 Revised September 2000

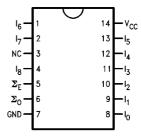
74F280 9-Bit Parity Generator/Checker

General Description

The F280 is a high-speed parity generator/checker that accepts nine bits of input data and detects whether an even or an odd number of these inputs is HIGH. If an even number of inputs is HIGH, the Sum Even output is HIGH. If an odd number is HIGH, the Sum Even output is LOW. The Sum Odd output is the complement of the Sum Even output


Ordering Code:

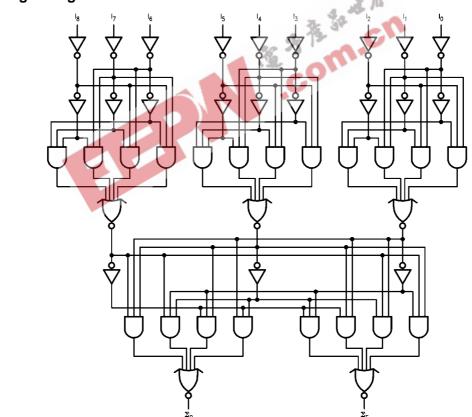
Order Number	Package Number	Package Description				
74F280SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow				
74F280SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74F280PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide				


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Unit Loading/Fan Out


Pin Names	Description	U.L.	Input I _{IH} /I _{IL}		
riii Naiiles	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
I ₀ –I ₈	Data Inputs	1.0/1.0	20 μA/-0.6 mA		
Σ_{O}	Odd Parity Output	50/33.3	−1 mA/20 mA		
Σ_{E}	Even Parity Output	50/33.3	−1 mA/20 mA		

Truth Table

Number of	Outputs				
HIGH Inputs I ₀ –I ₈	∑ Even	Σ Odd			
0, 2, 4, 6, 8	Н	L			
1, 3, 5, 7, 9	L	Н			

H = HIGH Voltage Level L = LOW Voltage Level

Logic Diagram

 \dot{z}_0 z_E Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

 $\begin{array}{lll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to } +125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \end{array}$

Junction Temperature under Bias -55°C to $+150^{\circ}\text{C}$ V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC} 3-STATE Output -0.5V to +5.5V

Current Applied to Output

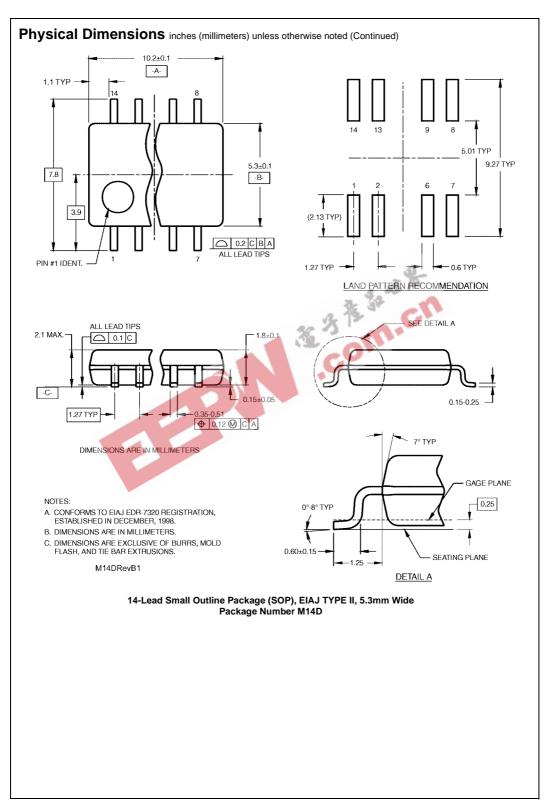
in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

Free Air Ambient Temperature $0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C}$ Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

3_

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	V _{CC}	Conditions	
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH 10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
	Voltage 5% V _{CC}	2.7	. =	1.40	O. J.		$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW Voltage 10% V _{CC}	1 , 1		0.5	V	Min	I _{OL} = 20 mA	
I _{IH}	Input HIGH		, ,	5.0	μА	Max	V _{IN} = 2.7V	
	Current	* <i>I</i> //		3.0	μΛ	IVIGA	V IN - 2.7 V	
I _{BVI}	Input HIGH Current	7 7		7.0	μА	Max	V _{IN} = 7.0V	
	Breakdown Test			7.0	μΛ	IVIGA		
I _{CEX}	Output HIGH			50	μА	Max	VV	
	Leakage Current			30	μΛ	IVIAX	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage	4.75			V	0.0	$I_{ID} = 1.9 \mu\text{A}$	
	Test	4.73			V		All Other Pins Grounded	
I _{OD}	Output Leakage			3.75	μА	0.0	V _{IOD} = 150 mV	
	Circuit Current			5.75			All Other Pins Grounded	
I _{IL}	Input LOW Current			-0.6	mA	Max	V _{IN} = 0.5V	
los	Output Short-Circuit Current	-60		-150	mA	Max	V _{OUT} = 0V	
I _{CCH}	Power Supply Current		25	38	mA	Max	V _O = HIGH	

AC Electrical Characteristics

Symbol	Parameter	$T_A = +25^{\circ}$ C $V_{CC} = +5.0$ V $C_L = 50$ pF			$T_{A} = -55^{\circ}\text{C to } +125^{\circ}\text{C}$ $V_{CC} = 5.0\text{V}$ $C_{L} = 50 \text{ pF}$		$T_A = 0$ °C to +70°C $V_{CC} = 5.0V$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	6.5	10.0	15.0	6.5	20.0	6.5	16.0	ns
t _{PHL}	I_n to Σ_E	6.5	11.0	16.0	6.5	21.0	6.5	17.0	
t _{PLH}	Propagation Delay	6.0	10.0	15.0	5.0	20.0	6.0	16.0	20
t _{PHL}	I_n to Σ_O	6.5	11.0	16.0	6.5	21.0	6.5	17.0	ns

$\textbf{Physical Dimensions} \ \ \text{inches (millimeters) unless otherwise noted}$ $\frac{0.335 - 0.344}{(8.509 - 8.738)}$ $\frac{0.150 - 0.157}{(3.810 - 3.988)}$ $\frac{0.053 - 0.069}{(1.346 - 1.753)}$ $\frac{0.010 - 0.020}{(0.254 - 0.508)}$ 8° MAX TYP ALL LEADS $\frac{0.004 - 0.010}{(0.102 - 0.254)}$ SEATING PLANE 0.008 - 0.010 (0.203 - 0.254) TYP ALL LEADS $\frac{0.014 - 0.020}{(0.356 - 0.508)} \text{ TYP}$ 0.016 - 0.050 (0.406 - 1.270) TYP ALL LEADS 0.004 (0.102) ALL LEAD TIPS 0.008 (0.203) TYP 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow Package Number M14A

74F280 9-Bit Parity Generator/Checker Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770(18.80 - 19.56)(2.286) 14 13 12 14 13 12 11 10 9 8 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 IDENT PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA $\frac{0.030}{(0.762)}$ MAX OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320 $\overline{(7.620 - 8.128)}$ 0.065 0.145 - 0.2000.060 TYP 4° TYP (3.683 - 5.080)(1.524) OPTIONAL * $\frac{0.008 - 0.016}{(0.203 - 0.406)} \text{ TYP}$ 0.020 $\frac{0.125 - 0.150}{(3.175 - 3.810)}$ 0.280 $\overline{(1.905\pm0.381)}$ (7.112)-MIN $\frac{0.014-0.023}{(0.356-0.584)}\,\mathrm{TYP}$ 0.100 ± 0.010 (2.540 ± 0.254) 0.050 ± 0.010 (1.270 - 0.254) $0.325 + 0.040 \\ -0.015$ $\left(8.255 + 1.016 \atop -0.381\right)$ N14A (REV F) 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com