

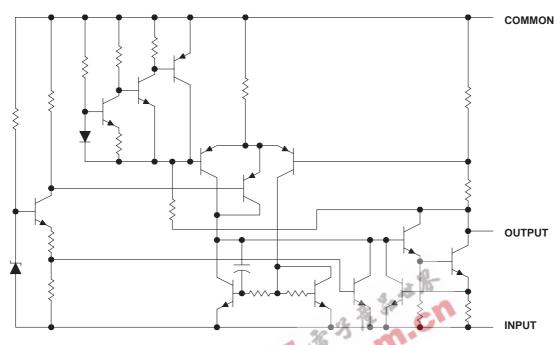
- 3-Terminal Regulators
- Output Current Up to 100 mA
- No External Components Required
- Internal Thermal-Overload Protection
- Internal Short-Circuit Current Limiting
- Direct Replacement for Motorola MC79L Series

TO-92

description

This series of fixed negative-voltage integrated-circuit voltage regulators is designed for a wide range of applications. These include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. In addition,

they can be used to control series pass elements to make high-current voltage-regulator circuits. One of these regulators can deliver up to 100 mA of output current. The internal current-limiting and thermal-shutdown features make them essentially immune to overload. When used as a replacement for a zener-diode and resistor combination, these devices can provide ef current.

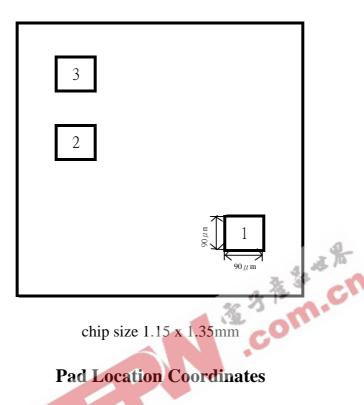

electrical characteristics at specified virtual junction temperature, V_I = otherwise noted)

PARAMETER	TEST CONDITIONS	т‡	MIN	TYP	MAX	UNIT
		25°C				
Output voltage	0	Full range				V
	I _O = 1 mA to 70 mA	Full range				
Input voltage regulation	V _I =	۰				
	V _I =					
Ripple rejection	V _I = f = 120 Hz	25°C				dB
Output	I _O = 1 mA to 100 mA	۰			60	
voltage regulation	I _O = 1 mA to 40 mA				30	
Output noise voltage	f = 10 Hz to 100 kHz	25°C				μV
Dropout voltage		25°C		1.7		V
		25°C				
		125°C				
Bias	V _I =	rongo			1.5	
current change	I _O = 1 mA to 40 mA	range		_	0.1	

[‡] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Full range for the 7

Tel:(852)2341 9276 Fax:(852)2797 8153 E-mail: wsccltd@hkstar.com

equivalent schematic


absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage: 79L	i
Operating free-air, case, or virtual junction temperature	°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range Teta –65°C to	150°C

recommended operating conditions

79L	MIN	MAX	UNIT
Input voltage, V _I			V
Output current, IO		100	mA
Operating virtual junction temperature, T _J			°C

Pad Location WS79L00

Pad Location Coordinates

Pad N	Pad Name	X(μ m)	Y (μ m)
1	Ground	1150	115
2	Input	115	690
3	Output	115	950