INTEGRATED CIRCUITS

Product specification

1990 Oct 04

IC15 Data Handbook

74F1604

FEATURES

- High impedance NPN base inputs for reduced loading (20µA in high and low state)
- Stores 16-bit wide data inputs, multiplexed 8-bit outputs
- Propagation delay 7.0ns typical
- Power supply current 70mA typical

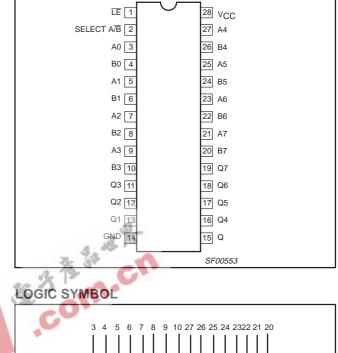
DESCRIPTION

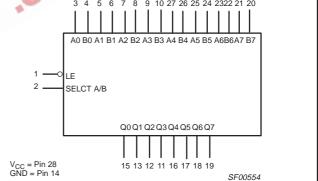
The 74F1604 is a dual octal transparent latch. Organized as 8–bit A and B latches, the latch outputs are connected by pairs to eight 2–input multiplexers. A select (SELECT A/B) input determines whether the A or B latch contents are multiplexed to the eight outputs. Data from the B inputs are selected when SELECT A/B is low; data from the A inputs are selected when SELECT A/B is high. Data enters the latch on the falling edge of the latch enable (LE) input. The latch remains transparent to the data inputs while LE is low, and stores the data that is present one setup time before the low–to–high latch enable transition.

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F1604	7.0ns	70mA

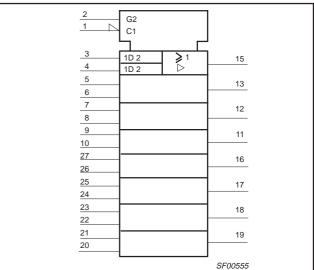
ORDERING INFORMATION

	ORDER CODE	
DESCRIPTION	COMMERCIAL RANGE $V_{CC} = 5V \pm 10\%$, $T_{amb} = 0^{\circ}C \text{ to } +70^{\circ}C$	PKG DWG #
28–pin plastic DIP	N74F1604N	SOT117-2
28-pin plastic SOL	N74F1604D	SOT136-1

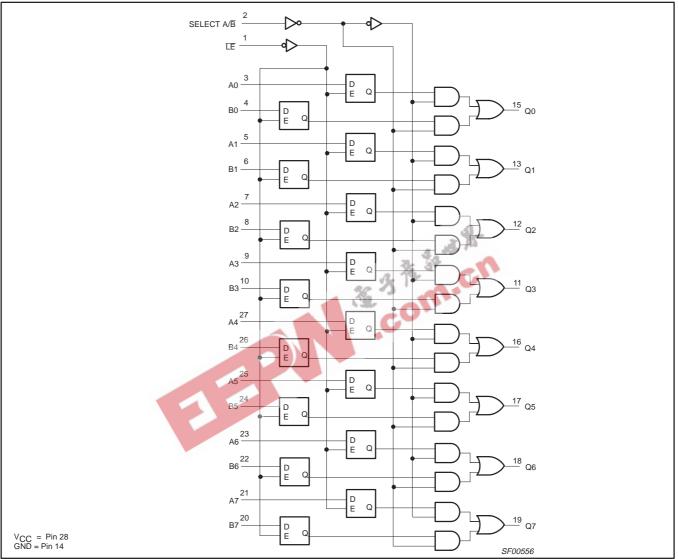

INPUT AND OUTPUT LOADING AND FAN OUT TABLE


PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0 – A7	Data inputs	1.0/0.033	20μΑ/20μΑ
B0 – B7	Data inputs	1.0/0.033	20μΑ/20μΑ
SELECT A/B	Select input	1.0/0.033	20μΑ/20μΑ
LE	Latch enable input (active low)	1.0/0.033	20μΑ/20μΑ
Q0 – Q7	Data outputs	50/33	1.0mA/20mA

Note to input and output loading and fan out table


One (1.0) FAST unit load is defined as: $20\mu A$ in the high state and 0.6mA in the low state.

PIN CONFIGURATION



IEC/IEEE SYMBOL

74F1604

LOGIC DIAGRAM

FUNCTION TABLE

	INPUTS			OUTPUTS	OUTPUTS
OPERATING MODE					
A0 – A7	B0 –B7	SELECT A/B	LE	Q0 – Q7	1
A data	B data	L	L	B data	Enable and read register
A data	B data	Н	L	A data	Enable and read register
Х	Х	Х	Н	NC	Hold
A data	B data	I	\uparrow	B data	
A data	B data	h	\uparrow	A data	Latch and read register

Notes to function table

H = High-voltage level

h High-voltage level one setup time before the low-to-high latch enable transition =

L =

=

Low-voltage level one setup time before the low-to-high latch enable transition No change (If SELECT A/B is toggled and the A latched data is different from B latched data then the output will change accordingly.) NC=

X ↑ = Don't care

= Low-to-high latch enable transition

Tamb

T_{stg}

74F1604

VNIT V mA V mA

°C

°C

0 to +70

-65 to +150

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device.

Unless otherwise noted these limits are over the operating free air temperature range.)						
SYMBOL	PARAMETER	RATING				
V _{CC}	Supply voltage	-0.5 to +7.0				
V _{IN}	Input voltage	-0.5 to +7.0				
I _{IN}	Input current	-30 to +5				
V _{OUT}	Voltage applied to output in high output state	–0.5 to V_{CC}				
I _{OUT}	Current applied to output in low output state	40				

RECOMMENDED OPERATING CONDITIONS

Storage temperature range

Operating free air temperature range

SYMBOL	PARAMETER		LIMITS			
	ā.	MIN	NOM	MAX	1	
V _{CC}	Supply voltage	4.5	5.0	5.5	V	
V _{IH}	High-level input voltage	2.0			V	
V _{IL}	Low-level input voltage			0.8	V	
l _{lk}	Input clamp current			-18	mA	
I _{OH}	High-level output current			-1	mA	
I _{OL}	Low-level output current			20	mA	
T _{amb}	Operating free air temperature range	0		+70	°C	

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		T	EST			UNIT		
			COND	MIN	TYP ²	MAX	1		
				I _{OH} = -1mA	±10%V _{CC}	2.5			V
V _{OH}	High-level output voltage		$V_{CC} = MIN, V_{IL} = MAX,$		±5%V _{CC}	2.7	3.4		V
			$V_{IH} = MIN$	I _{OH} = -3mA	±10%V _{CC}	2.4			V
					±5%V _{CC}	2.7	3.3		V
V _{OL}	V _{OL} Low-level output voltage		$V_{CC} = MIN, V_{IL} = MAX,$	I _{OL} = MAX	±10%V _{CC}		0.30	0.50	V
			$V_{IH} = MIN$		±5%V _{CC}		0.30	0.50	V
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$				-0.73	-1.2	V
I _I	Input current at maximum input vo	oltage	$V_{CC} = MAX, V_I = 7.0V$					100	μΑ
I _{IH}	High-level input current		$V_{CC} = MAX, V_I = 2.7V$					20	μΑ
I _{IL}	Low-level input current		$V_{CC} = MAX, V_I = 0.5V$					-20	μΑ
I _{OS}	Short-circuit output current ³	$V_{CC} = MAX$			-60		-150	mA	
I _{CC}	Supply current (total)	I _{CCH}	V _{CC} = MAX				60	80	mA
	I _{CCL}		1				75	100	mA

Notes to DC electrical characteristics

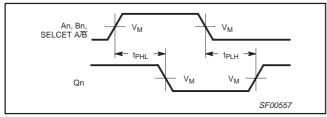
1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

2. All typical values are at $V_{CC} = 5V$, $T_{amb} = 25^{\circ}C$.

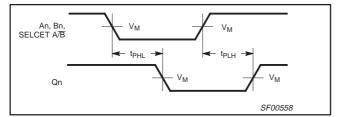
3. Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

Product specification

74F1604


AC ELECTRICAL CHARACTERISTICS

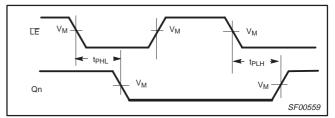
					LIN	IITS		
			Tai	_{mb} = +25	°C	T _{amb} = 0°C		
SYMBOL	PARAMETER	TEST		_{CC} = +5.0		V _{CC} = +5.	UNIT	
		CONDITION		0pF, R _L =		_	R = 500 Ω	
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay SELECT A/B to Qn (non–inverting)	Waveform 2	3.0 3.5	5.5 6.5	8.5 10.0	2.5 3.0	9.0 11.5	ns
t _{PLH} t _{PHL}	Propagation delay SELECT A/B to Qn (inverting)	Waveform 1	4.0 2.5	7.0 4.5	10.5 7.5	3.5 2.0	12.0 8.0	ns
t _{PLH} t _{PHL}	Propagation delay LE to Qn	Waveform 3	6.5 6.0	9.5 9.0	13.0 12.5	5.5 5.0	15.0 14.0	ns
t _{PLH} t _{PHL}	Propagation delay An or Bn to Qn	Waveform 1, 2	4.0 4.0	6.5 7.0	9.5 10.5	3.5 3.5	10.5 12.5	ns


AC SETUP REQUIREMENTS

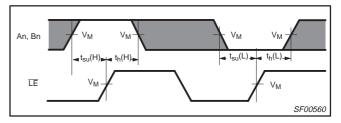
AC SETUR	PREQUIREMENTS			a it	6-			
SYMBOL	PARAMETER					0V ± 10% R _L = 500Ω	UNIT	
t _{su} (H) t _{su} (L)	Setup time, high or low An, Bn to LE	Waveform 4	0.0 1.0		INIAA	0.0 3.5		ns
t _h (H) t _h (L)	Hold time, high or low An, Bn to LE	Waveform 4	1.5 3.0			2.0 3.5		ns
t _w (L)	LE Pulse width, low	Waveform 4	6.5			7.5		ns

AC WAVEFORMS

Waveform 1. Propagation delay for SELECT A/B to output (A register stored data = low) or An. Bn to output



Waveform 2. Propagation delay for SELECT A/B to output (A register stored data = low) or An. Bn to output


Note to AC waveforms

For all waveforms, $V_M = 1.5V$.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 3. Propagation delay for latch enable to output

Waveform 4. Setup time and hold times and LE pulse width

TEST CIRCUIT AND WAVEFORMS

VIN

 \odot

÷

Latch

AMP (V) 90% 90% NEGATIVE PULSE ٧M ٧M 10% 10% 0V - tTHL (tf) tTLH (tr) tTLH (tr) tTHL (tf)-AMP (V) 90% 90% POSITIVE PULSE ٧м Vм 10% 10% 0V Input Pulse Definition

< c_L ≩ r_L

÷

 $R_L = Load resistor;$

DEFINITIONS:

PULSE GENERATOR

- RL
 = Load resistor, see AC ELECTRICAL CHARACTERISTICS for value.

 CL
 = Load capacitance includes jig and probe capacitance; see AC ELECTRICAL CHARACTERISTICS for value.
- Termination resistance should be equal to Z_{OUT} of $R_T =$

VCC

Č

D.U.T.

4

Test Circuit for Totem-Pole Outputs

ξ_R_T

÷

VOUT

0

÷

≐

pulse generators.

	-	Input	Puise Defi	nition						
fomily	INPUT PULSE REQUIREMENTS									
family	amplitude	VM	rep. rate	tw	t _{TLH}	t _{THL}				
74F	3.0V	1.5V	1MHz	500ns 2.5ns		2.5ns				
36	31	0.	0			:	SF00006			
	.00									

October 4, 1990

74F1604

74F1604

DIP28: plastic dual in-line package; 28 leads (600 mil); long body SOT117-2 seating plane ME C Π L Ŧ \ Φ w M b₁ (e1) M_H 28 pin 1 index Е Մ ህ 14 10 mm 0 5 L 1 scale

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	с	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	М _Е	М _Н	w	Z ⁽¹⁾ max.
mm	5.08	0.51	3.94	1.63 1.14	0.56 0.43	0.38 0.25	37.08 35.94	14.22 13.84	2.54	15.24	3.51 3.05	15.75 15.24	17.65 15.24	0.25	2.10
inches	0.200	0.020	0.155	0.064 0.045	0.022 0.017	0.015 0.010	1.460 1.415	0.560 0.545	0.100	0.600	0.138 0.120	0.62 0.60	0.695 0.600	0.01	0.083

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT117-2		MS-011AB			95-03-11	

74F1604

SO28: plastic small outline package; 28 leads; body width 7.5mm SOT136-1 D Α X c L Ā <u>ц_л</u> = v 🕅 A HE 23 12 3ª + K Q А pin 1 index Ŧ 14 detail X • 0 w M bp 0 5 10 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) Α D⁽¹⁾ E⁽¹⁾ z ⁽¹⁾ UNIT bр Lp A₁ A_2 С $H_{\rm E}$ L Q v θ A_3 е w У max. 0.30 2.45 0.49 0.32 18.1 7.6 10.65 1.1 0.9 1.1 2.65 mm 0.25 1.27 0.25 0.25 0.1 1.4 0.10 2.25 0.36 0.23 17.7 7.4 10.00 0.4 1.0 0.4 8⁰ 00 0.035 0.012 0.096 0.019 0.013 0.71 0.30 0.419 0.043 0.043 0.10 inches 0.01 0.050 0.055 0.01 0.01 0.004 0.004 0.089 0.014 0.009 0.69 0.29 0.394 0.016 0.039 0.016 Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	1550E DATE
SOT136-1	075E06	MS-013AE				-95-01-24 97-05-22

NOTES

74F1604

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Document order number:

PHILIPS

Date of release: 10-98 9397-750-05194

Let's make things better.

