National Semiconductor

54F/74F14 Hex Inverter Schmitt Trigger

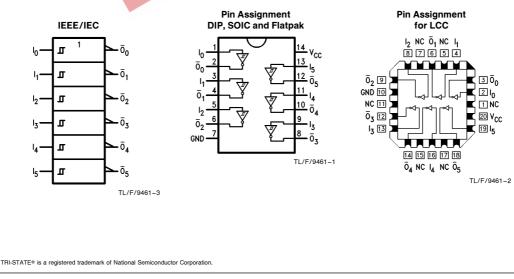
General Description

The 'F14 contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.

Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totempole output. The Schmitt trigger uses positive feed back to effectively speed-up slow input transition, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

Features

- Guaranteed 4000V minimum ESD protection
- Standard Military Drawing
 - 5962-88752


Commercial	Military	Package Number	Package Description
74F14PC		N14A	14-Lead (0.300" Wide) Molded Dual-In-Line
	54F14DM (Note 2)	J14A	14-Lead Ceramic Dual-In-Line
74F14SC (Note 1)		M14A	14-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F14SJ (Note 1)		M14D	14-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F14FM (Note 2)	W14B	14-Lead Cerpack
	54F14LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use Suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbol

Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/9461

RRD-B30M75/Printed in U. S. A.

Unit Loading/Fan Out

			54F/74F			
I _n Input 1.0/1.0 20 μA/-0.6 mA	Pin Names	Description	• -=	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
$\overline{\overline{O}}_{n}$ Output 50/33.3 -1 mA/20 mA				20 μA/ – 0.6 mA – 1 mA/20 mA		

Function Table

Input	Output O			
А				
L	н			
н	L			

H = HIGH Voltage Level L = LOW Voltage Level

2

运 3 港 ^编 CN

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

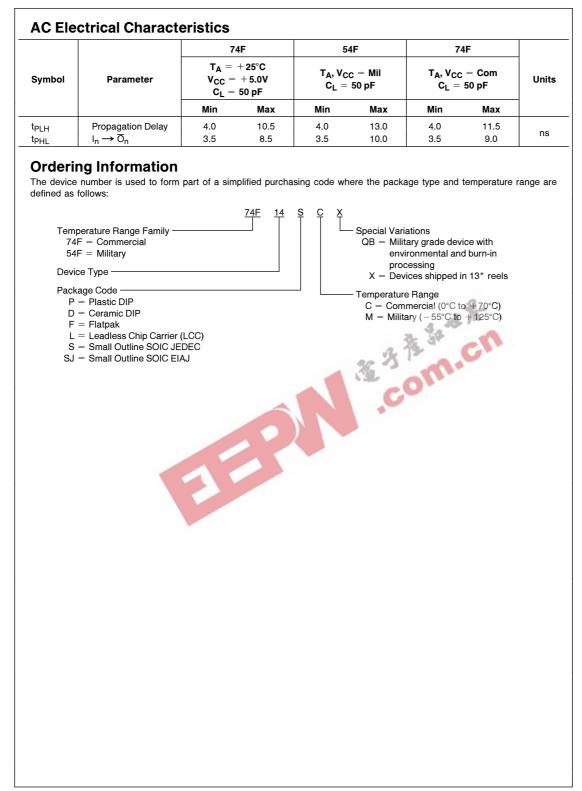
Office/Distributors for availabilit	ly and specifications.
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +175°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
TRI-STATE [®] Output	-0.5V to $+5.5V$
Current Applied to Output in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V
Note 1: Absolute maximum ratings are value	s beyond which the device may

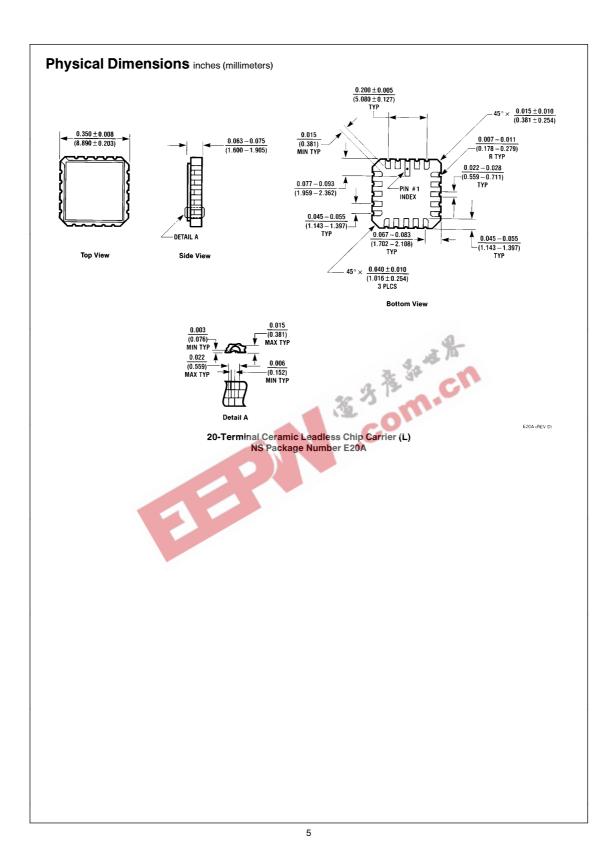
be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

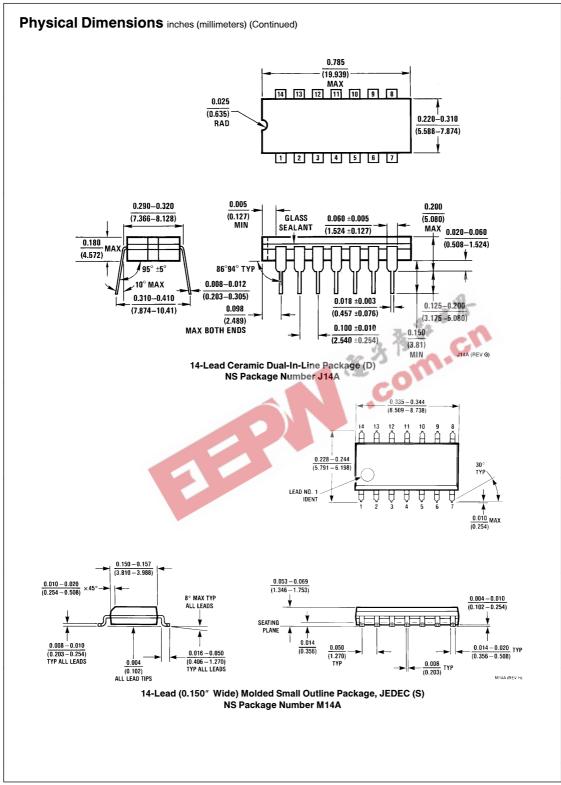
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

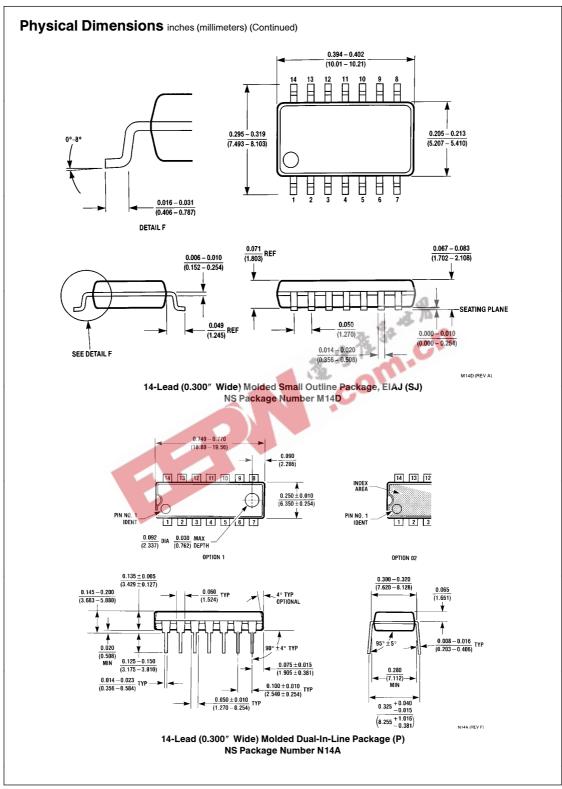
DC Electrical Characteristics

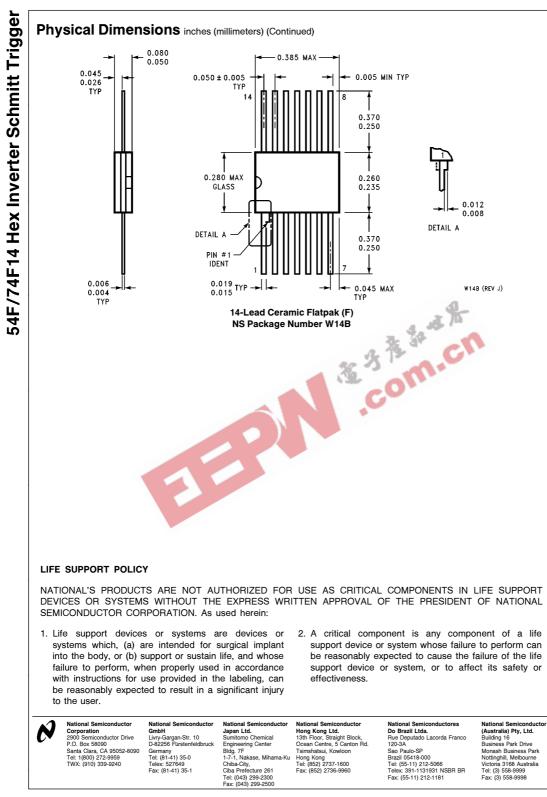
Recommended Operating Conditions


Free Air Ambient Temperature Military Commercial


Supply Voltage


Military Commercial -55°C to $+125^\circ\text{C}$ $0^{\circ}C$ to $\,+\,70^{\circ}C$


+ 4.5V to + 5.5V + 4.5V to + 5.5V


	ectrical Characteristics Parameter		54F/74F		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a fr		
Symbol			Min Typ Max		Units	Vcc	Conditions	
V _{T+}	Positive-Going Threshold		1.5	1.7	2.0	V	5.0V	
V _T -	Negative-Going Threshold		0.7	0.9	1.1	v	5.0V	
ΔV _T	Hysteresis (V _{T+} -V _T -)		0.4	0.8		V	5.0V	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{\rm IN} = -18 \rm mA$
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			v	Min	$l_{OH} = -1 \text{ mA}$ $l_{OH} = -1 \text{ mA}$ $l_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	v	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$
Ін	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$
BVI	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	74F	4.75			v	Max	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounde
IOD	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounde
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
los	Output Short-Circuit Current		-60		- 150	mA	Max	$V_{OUT} = 0V$
ссн	Power Supply Current				25	mA	Max	V _O = HIGH
ICCL	Power Supply Current				25	mA	Max	V _O = LOW

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.