Octal D Flip-Flop with Clear

The SN74LS273 is a high-speed 8-Bit Register. The register consists of eight D-Type Flip-Flops with a Common Clock and an asynchronous active LOW Master Reset. This device is supplied in a 20-pin package featuring 0.3 inch lead spacing.

- 8-Bit High Speed Register
- Parallel Register
- Common Clock and Master Reset
- Input Clamp Diodes Limit High-Speed Termination Effects

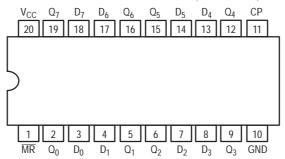
ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

> LOW POWER SCHOTTKY

GUARANTEED OPERATING RANGES

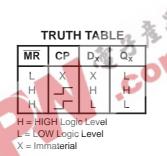
Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{OH}	Output Current – High			-0.4	mΑ
I _{OL}	Output Current – Low			8.0	mA

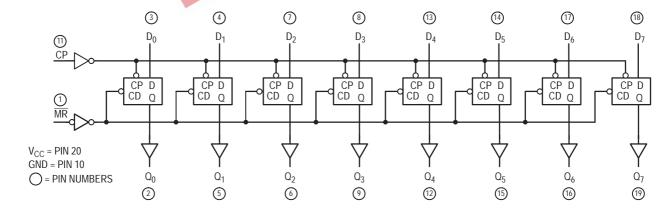


SOIC DW SUFFIX CASE 751D

ORDERING INFORMATION

Device	Package	Shipping		
SN74LS273N	16 Pin DIP	1440 Units/Box		
SN74LS273DW	16 Pin	2500/Tape & Reel		


CONNECTION DIAGRAM DIP (TOP VIEW)


		LOADING (Note a)		
PIN NAMES		HIGH	LOW	
CP	Clock (Active HIGH Going Edge) Input	0.5 U.L.	0.25 U.L.	
$\frac{D_0 - D_7}{MR}$	Data Inputs	0.5 U.L.	0.25 U.L.	
MR	Master Reset (Active LOW) Input	0.5 U.L.	0.25 U.L.	
$O_0 - O_7$	Register Outputs	10 U.L.	5 U.L.	

NOTES:

a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The SN74LS273 is an 8-Bit Parallel Register with a common Clock and common Master Reset.

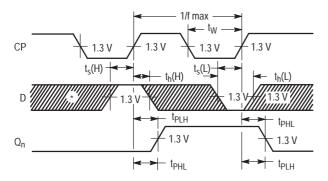
When the \overline{MR} input is LOW, the Q outputs are LOW, independent of the other inputs. Information meeting the

setup and hold time requirements of the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock input.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs		
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$		
V _{OH}	Output HIGH Voltage	2.7	3.5		V	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table		
.,	0 / 1/00/1/1/		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$	
V _{OL}	Output LOW Voltage		0.35	0.5	V	I _{OL} = 8.0 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table	
	Innut HCH Current			20	μΑ	$V_{CC} = MAX$, $V_{IN} = 2.7 V$		
l I _{IH}	Input HIGH Current			0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
I _{IL}	Input LOW Current			-0.4	mA	$V_{CC} = MAX$, $V_{IN} = 0.4 V$		
I _{OS}	Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX		
I _{CC}	Power Supply Current			27	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.


AC CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
f _{MAX}	Maximum Input Clock Frequency	30	40		MHz	Figure 1
t _{PHL}	Propagation Delay, MR to Q Output		18	27	ns	Figure 2
t _{PLH} t _{PHL}	Propagation Delay, Clock to Output		17 18	27 27	ns	Figure 1

AC SETUP REQUIREMENTS (T_A = 25° C, V_{CC} = 5.0 V)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _w	Pulse Width, Clock or Clear	20			ns	Figure 1
t _s	Data Setup Time	20			ns	Figure 1
t _h	Hold Time	5.0			ns	Figure 1
t _{rec}	Recovery Time	25			ns	Figure 2

AC WAVEFORMS

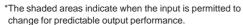


Figure 1. Clock to Output Delays, Clock Pulse Width, Frequency, Setup and Hold Times Data to Clock

DEFINITION OF TERMS

SETUP TIME (t_s) — is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW-to-HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (t_h) — is defined as the minimum time following the clock transition from LOW-to-HIGH that the logic level must be maintained at the input in order to ensure

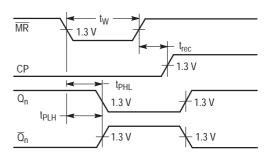
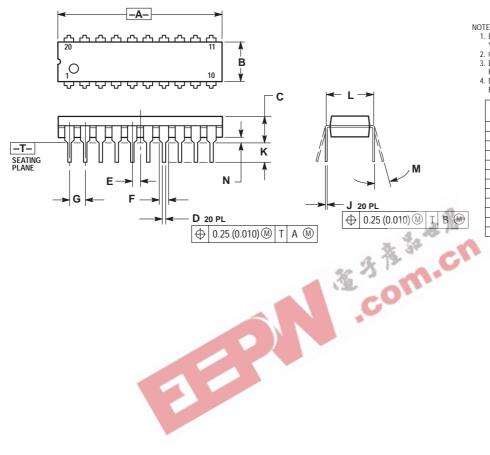


Figure 2. Master Reset to Output Delay, Master Reset Pulse Width, and Master Reset Recovery Time


continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW-to-HIGH and still be recognized.

RECOVERY TIME (t_{rec})—is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW-to-HIGH in order to recognize and transfer HIGH data to the Q outputs.

PACKAGE DIMENSIONS

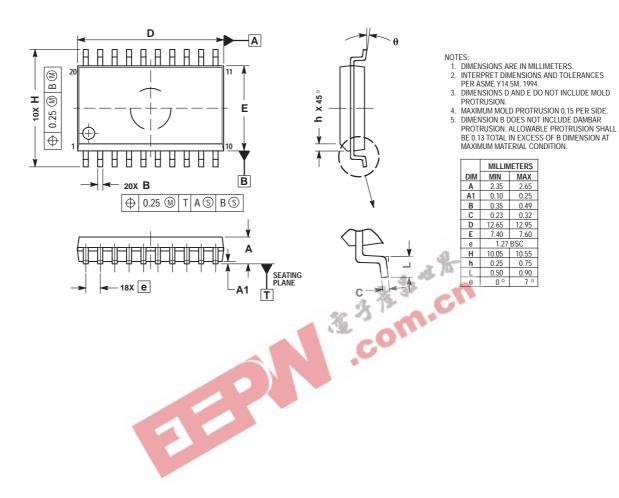
N SUFFIX

PLASTIC PACKAGE CASE 738-03 **ISSUE E**

NOTES:

- IOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	INC	HES	MILLIN	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	1.010	1.070	25.66	27.17	
В	0.240	0.260	6.10	6.60	
С	0.150	0.180	3.81	4.57	
D	0.015	0.015 0.022		0.55	
E	0.050	BSC	1.27 BSC		
F	0.050	0.070	1.27	1.77	
G	0.100	BSC	2.54 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.140	2.80	3.55	
L	0.300	BSC	7.62	BSC	
M	0 °	15°	0°	15°	
N	0.020	0.040	0.51	1.01	

D SUFFIX PLASTIC SOIC PACKAGE CASE 751D-05 ISSUE F

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong 800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5487–8345 Email: r14153@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.