FAIRCHILD

SEMICONDUCTOR

September 2000 Revised September 2000

74LCXH162244 Low Voltage 16-Bit Buffer/Line Driver with Bushold and 26 Ω Series Resistors in Outputs

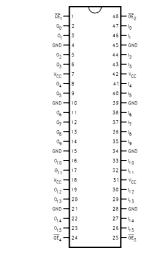
General Description

The LCXH162244 contains sixteen non-inverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Each nibble has separate 3-STATE control inputs which can be shorted together for full 16-bit operation.

The LCXH162244 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

In addition, the outputs include equivalent 26 Ω (nominal) series resistors to reduce overshoot and undershoot and are designed to sink/source up to 12 mA at V_{CC} = 3.0V.

The LCXH162244 is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment.


The LCXH162244 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant control inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- Outputs include equivalent series resistance of 26Ω to make external termination resistors unnecessary and reduce overshoot and undershoot
- Bushold on data inputs eliminates the need for external pull-up/pull-down resistors
- **5.3** ns t_{PD} max (V_{CC} = 3.0V), 20 μ A I_{CC} max
- Power down high impedance inputs and outputs
- ±12 mA output drive ($V_{CC} = 3.0V$)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:
 - Human body model > 2000V Machine model > 200V

Ordering Code:

Connection Diagram

Logic Symbol

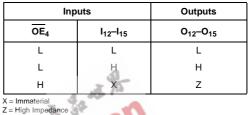
Pin Descriptions

Pin Names	Description
OEn	Output Enable Input (Active LOW)
I ₀ —I ₁₅	Bushold Inputs
O ₀ -O ₁₅	Outputs

© 2000 Fairchild Semiconductor Corporation DS500249

Truth Tables

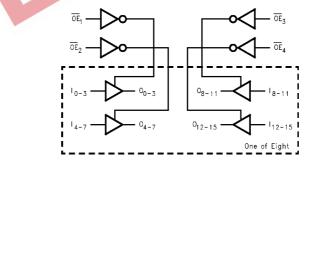
Inputs		Outputs
OE ₁	I ₀ –I ₃	O ₀ –O ₃
L	L	L
L	н	н
Н	х	Z


	inp	uts	Outputs
	\overline{OE}_3	I ₈ –I ₁₁	0 ₈ –0 ₁₁
	L	L	L
	L	н	н
	н	х	Z

Inputs		Outputs
OE ₂ I ₄ –I ₇		0 ₄ –0 ₇
L	L	L
L	н	н
Н	Х	Z

H = HIGH Voltage Level L = LOW Voltage Level

Functional Description


The LCXH162244 contains sixteen non-inverting buffers with 3-STATE standard outputs. The LCXH162244 data inputs include active bushold circuitry eliminating the need for pull-up resistors to hold unused or floating data inputs at a valid logic level. The devise is also designed with 26Ω series resistors in the outputs. This design reduces line noise in applications such as memory address drivers, clock drivers and bus transceiver/transmitters. The device is nibble (4 bits) controlled with each nibble functioning

identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. The 3-STATE outputs are controlled by an Output Enable (\overline{OE}_n) input for each nibble. When \overline{OE}_n is LOW, the outputs are in

2-state mode. When \overline{OE}_n is LOW, the outputs are in 2-state mode. When \overline{OE}_n is HIGH, the outputs are in the high impedance mode, but this does not interfere with entering new data into the inputs.

Logic Diagram

	Paramet	er	Value	Сог	Conditions		
V _{CC}	Supply Voltage		-0.5 to +7.0				V
VI	DC Input Voltage	OE	-0.5 to +7.0				
•		l ₀ - l ₁₅	-0.5 to V _{CC} + 0.5				V
Vo	DC Output Voltage	0 10	-0.5 to +7.0	Output	in 3-STATE		
U			-0.5 to V _{CC} + 0.5	Output in HIGH c	r LOW State	e (Note 2)	V
I _{IK}	DC Input Diode Currer	nt	-50	VI	< GND		mA
I _{OK}	DC Output Diode Curr	ent	-50	Vo	< GND		
			+50	V _C	> V _{CC}		mA
I ₀	DC Output Source/Sin	k Current	±50				mA
I _{CC}	DC Supply Current pe	r Supply Pin	±100				mA
I _{GND}	DC Ground Current pe	r Ground Pin	±100				mA
T _{STG}	Storage Temperature		-65 to +150				°C
•	Supply Voltage	Pa	Irameter	Operating	2.0	мах 3.6	
Symbol	-	Pa	rameter		Min	Мах	Units
V _{CC}	Supply Voltage			Operating	2.0	3.6	V
				Data Retention	1.5	3.6	v
VI	Input Voltage		90	3	0	V _{CC}	V
V _O	Output Voltage			HIGH or LOW State	0	V _{CC}	V
				3-STATE	0	5.5	•
I _{OH} /I _{OL}	Output Current			$V_{CC} = 3.0V - 3.6V$		±12	
				$V_{\rm CC} = 2.7 V - 3.0 V$		±8	mA
				$V_{CC} = 2.3V - 2.7V$		±4	
		m n n r n hurn			-40	85	°C
T _A	Free-Air Operating Ter				-40	00	0
Δt/ΔV	Input Edge Rate, V _{IN} =	= 0.8V–2.0V, V ₍		lavias connet ha quarant	0	10	ns/V
Δt/ΔV Note 1: The at these limit mended Ope Note 2: I _O Al Note 3: Unus		= 0.8V-2.0V, V _c are those values be ined in the Electric efine the conditions to be observed. Id HIGH or LOW. T	yond which the safety of the of al Characteristics tables are in s for actual device operation. They may not float.		0 eed. The device	10 e should not be	ns/V
Δt/ΔV Note 1: The at these limit mended Ope Note 2: I _O Al Note 3: Unus	Input Edge Rate, V _{IN} = Absolute Maximum Ratings e its. The parametric values del erating Conditions' table will d ubsolute Maximum Rating mus used control inputs must be he ectrical Chara	= 0.8V–2.0V, V _c are those values be ined in the Electric effine the conditions the observed. Id HIGH or LOW. T Cteristics	Yond which the safety of the c al Characteristics tables are n s for actual device operation. 'hey may not float.		0 eed. The device	10 e should not be m Ratings. The	ns/V e operated e "Recom-
Δt/ΔV Note 1: The at these limit mended Ope Note 2: I _O Al Note 3: Unus	Input Edge Rate, V _{IN} = Absolute Maximum Ratings e its. The parametric values del erating Conditions" table will d absolute Maximum Rating mus used control inputs must be he	= 0.8V–2.0V, V _c are those values be ined in the Electric effine the conditions the observed. Id HIGH or LOW. T Cteristics	yond which the safety of the of al Characteristics tables are in s for actual device operation. They may not float.	not guaranteed at the Ab	0 eed. The device solute Maximur	10 e should not be m Ratings. The	ns/V
Δt/ΔV Note 1: The at these limit mended Ope Note 2: I ₀ Al Note 3: Unus DC Ele	Input Edge Rate, V _{IN} = Absolute Maximum Ratings e its. The parametric values del erating Conditions' table will d ubsolute Maximum Rating mus used control inputs must be he ectrical Chara	= 0.8V–2.0V, V _c are those values be ined in the Electric effine the conditions the observed. Id HIGH or LOW. T Cteristics	Yond which the safety of the c al Characteristics tables are n s for actual device operation. 'hey may not float.	Not guaranteed at the Ab	0 eed. The device solute Maximur $T_A = -40^{\circ}C$	10 e should not be m Ratings. The C to +85°C	ns/V operated "Recom-
At/AV Note 1: The at these limit mended Ope Note 2: I _O Al Note 3: Unus DC Ele Symbol V _{IH}	Input Edge Rate, V _{IN} = Absolute Maximum Ratings e its. The parametric values del erating Conditions" table will d absolute Maximum Rating mus used control inputs must be he ectrical Chara Parameter	= 0.8V–2.0V, V _c are those values be ined in the Electric effine the conditions the observed. Id HIGH or LOW. T Cteristics	Yond which the safety of the c al Characteristics tables are n s for actual device operation. 'hey may not float.	Vcc (V) 2.3 - 2.7 2.7 - 3.6	0 eed. The device solute Maximur T _A = -40°C Min	10 e should not be m Ratings. The C to +85°C	ns/V e operated e "Recom-
At/AV Note 1: The at these limit mended Ope Note 2: I _O Al Note 3: Unus DC Ele Symbol V _{IH}	Input Edge Rate, V _{IN} = Absolute Maximum Ratings e its. The parametric values del erating Conditions" table will d absolute Maximum Rating mus used control inputs must be he ectrical Chara Parameter	= 0.8V–2.0V, V _c are those values be ined in the Electric effine the conditions the observed. Id HIGH or LOW. T Cteristics	Yond which the safety of the c al Characteristics tables are n s for actual device operation. 'hey may not float.	Vcc (V) 2.3 - 2.7 2.7 - 3.6 2.3 - 2.7	$T_{A} = -40^{\circ}C$ $T_{A} = -40^{\circ}C$ Min 1.7	10 e should not be m Ratings. The C to +85°C Max 0.7	ns/V operated "Recom-
Δt/ΔV Note 1: The at these limit mended Ope Note 2: I _O Al Note 3: Unus	Input Edge Rate, V _{IN} = Absolute Maximum Ratings e its. The parametric values del erating Conditions" table will d absolute Maximum Rating mus used control inputs must be he ectrical Chara Parameter HIGH Level Input Voltage	= 0.8V–2.0V, V _C are those values be ined in the Electric efine the conditions it be observed. Id HIGH or LOW. T Cteristics	Yond which the safety of the c al Characteristics tables are n s for actual device operation. 'hey may not float.	Vcc (V) 2.3 - 2.7 2.7 - 3.6	$T_{A} = -40^{\circ}C$ $T_{A} = -40^{\circ}C$ Min 1.7	10 e should not be n Ratings. The C to +85°C Max	ns/V operated o "Recom- Units V

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Symbol	Falameter	Conditions	(V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 - 3.6	2.0		v
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 - 3.6		0.8	v
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	V _{CC} - 0.2		
	$I_{OH} = -4 \text{ mA}$	2.3	1.8		I	
		$I_{OH} = -4 \text{ mA}$	2.7	2.2		V
		$I_{OH} = -6 \text{ mA}$	3.0	2.4		
		I _{OH} = -8 mA	2.7	2.0		
		$I_{OH} = -12 \text{ mA}$	3.0	2.0		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 4 mA	2.3		0.6	
		I _{OL} = 4 mA	2.7		0.4	v
		I _{OL} = 6 mA	3.0		0.55	v
		I _{OL} = 8 mA	2.7		0.6	
		I _{OL} = 12 mA	3.0		0.8	

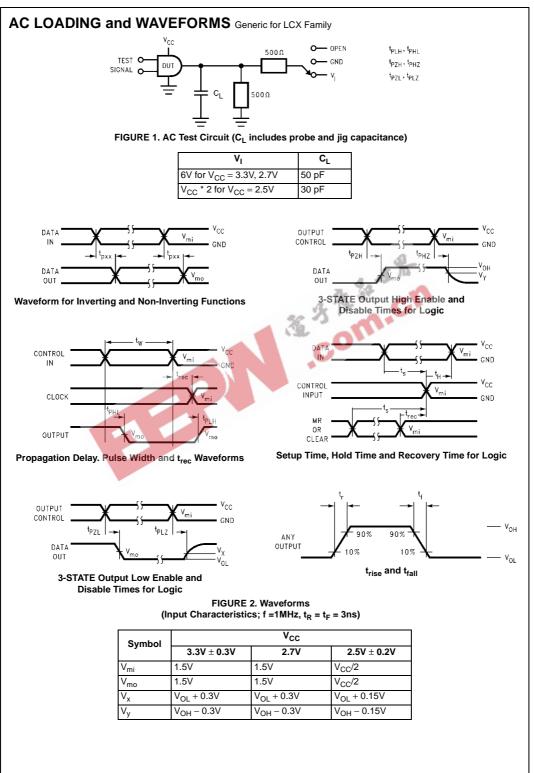
74LCXH162244

DC Electrical Characteristics (Continued)

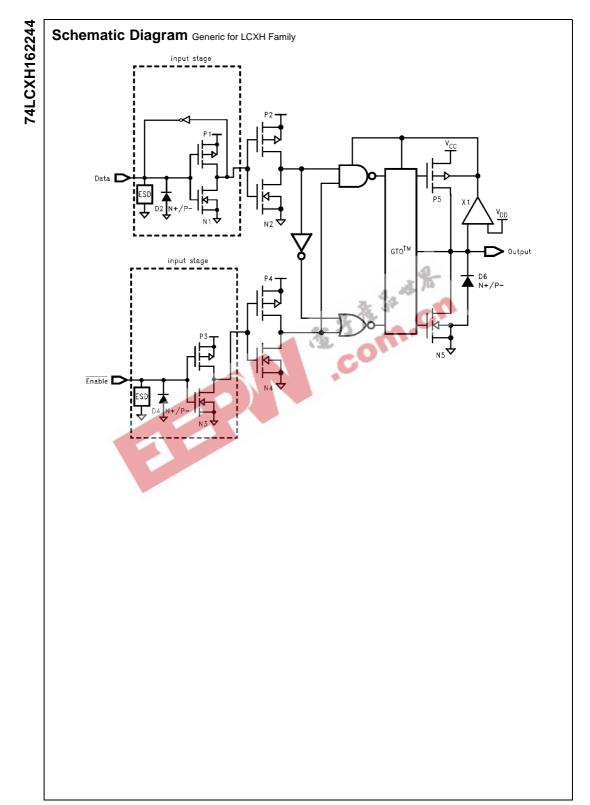
Symbol	Parameter		Conditions	v _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
	i alameter		Conditions	(V)	Min	Max	Units
I _I	Input Leakage Current	Data	$V_I = V_{CC}$ or GND	2.3 - 3.6		±5.0	μA
		Control	$0 \le V_l \le 5.5$	2.3 - 3.6		±5.0	μΑ
I _{I(HOLD)}	Bushold Input Minimum	n V _{IN} = 0.7V	2.3	45			
	Drive Hold Current		$V_{IN} = 1.7V$	2.5	-45		
			$V_{IN} = 0.8V$	3.0	75		μA
			$V_{IN} = 2.0V$	3.0	-75		
I _{I(OD)}	Bushold Input Over-Drive	ve (Note 4)	2.7	300			
	Current to Change State		(Note 5)	2.1	-300		μA
			(Note 4)	3.6	450		
			(Note 5)	5.0	-450		
l _{oz}	3-STATE Output Leakage		$0 \le V_O \le 5.5V$	2.3 - 3.6		±5.0	μΑ
			$V_I = V_{IH} \text{ or } V_{IL}$	2.3 - 3.0		±3.0	
I _{OFF}	Power-Off Leakage Curren	t	$V_0 = 5.5V$	0	-	10	μΑ
I _{CC}	Quiescent Supply Current		$V_I = V_{CC}$ or GND	2.3 - 3.6		20	μΑ
Δl _{CC}	Increase in I _{CC} per Input		$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6	5	500	μΑ

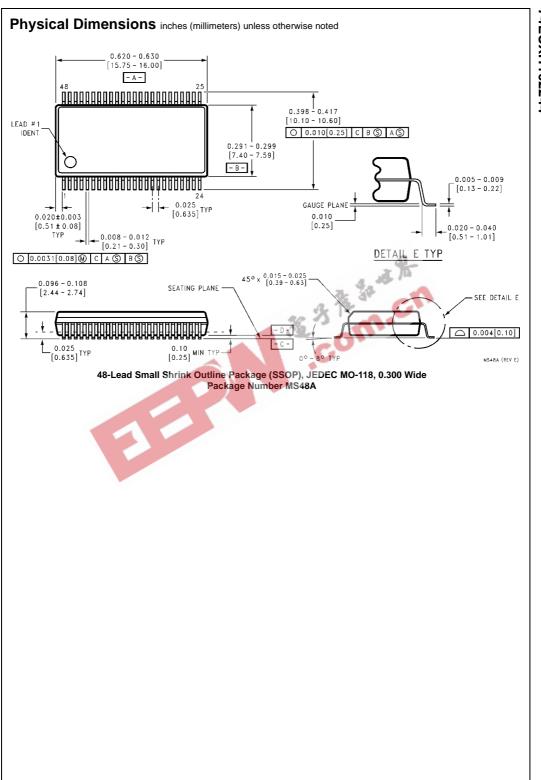
Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW: AC Electrical Characteristics

			TA	= -40°C to +8	35°C, R _L = 50	0 Ω		
Symbol	Parameter	V _{CC} = 3.	3V ± 0.3V	V _{cc} =	= 2.7V	V _{CC} = 2.5	$5V \pm 0.2V$	Units
		С _L =	C _L = 50 pF		C _L = 50 pF		30 pF	Units
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.0	5.3	1.0	6.0	1.0	6.4	
t _{PLH}	Data to Output	1.0	5.3	1.0	6.0	1.0	6.4	ns
t _{PZL}	Output Enable Time	1.0	6.3	1.0	7.1	1.0	8.2	
t _{PZH}		1.0	6.3	1.0	7.1	1.0	8.2	ns
t _{PLZ}	Output Disable Time	1.0	5.4	1.0	5.7	1.0	6.5	ns
t _{PHZ}		1.0	5.4	1.0	5.7	1.0	6.5	115
t _{OSHL}	Output to Output Skew (Note 6)		1.0					ns
t _{OSLH}			1.0					115

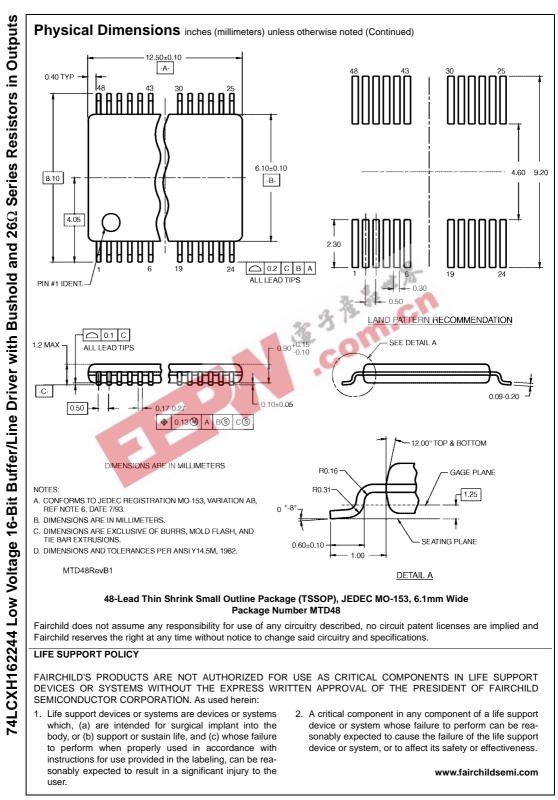

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics


Symbol Parameter		Conditions	V _{cc}	$T_A = 25^{\circ}C$	Units
Symbol	Falanelei	conditions	(V)	Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.35	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	0.25	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.35	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	-0.25	v


Capacitance

Symbol	Parameter	Conditions	Typical	Units
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , f = 10 MHz	20	pF



74LCXH162244

74LCXH162244

