

SEMICONDUCTOR TM

74LVQ74 Low Voltage Dual D-Type Positive Edge-Triggered Flip-Flop

General Description

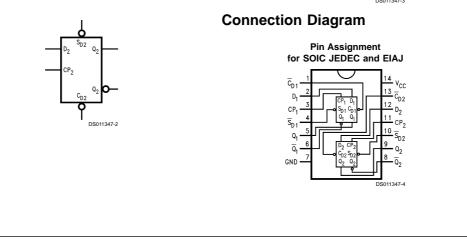
The LVQ74 is a dual D-type flip-flop with Asynchronous Clear and Set inputs and complementary (Q, \overline{Q}) outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input.

Asynchronous Inputs:

LOW input to \overline{S}_{D} (Set) sets Q to HIGH level

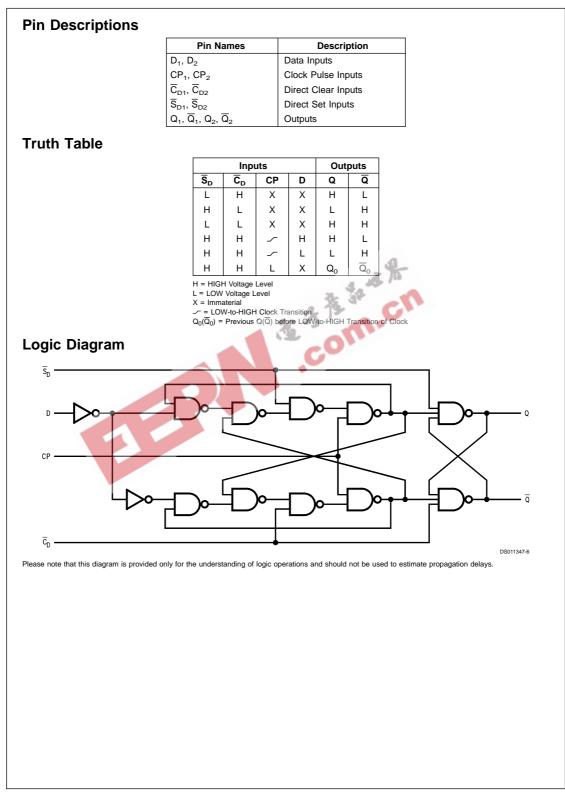
LOW input to \overline{C}_D (Clear) sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

Features


- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and
- dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- Guaranteed incident wave switching into 75Ω

3

CP2 D2 CD2


Ordering Code:

0		
Order Number	Package Number	Package Description
74LVQ74SC	M14A	14-Lead (0.150" Wide) Molded Small Outline Integrated Circuit, SOIC JEDEC
74LVQ74SJ	M14D	14-Lead Molded Small Outline Package, SOIC EIAJ
		appending the suffix letter "X" to the ordering code.
Logic Symb	DOIS	IEEE/IEC
	L L	\overline{s}_{D1}
	D1 SD1 Q1	$CP_1 \longrightarrow C_1$
	CP.	$\overline{c}_{D1} \rightarrow R$
		\overline{s}_{D2}

www.fairchildsemi.com

May 1998

www.fairchildsemi.com

2

Absolute Maximum Ratings (Note 1)

	•
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _I)	-0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to to V_{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V_{CC} or Ground Current	
(I _{CC} or I _{GND})	±200 mA
Storage Temperature (T _{STG})	-65°C to +150°C
DC Latch-Up Source or	
Sink Current	±100 mA

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to $V_{\rm CC}$
Operating Temperature (T _A)	-40°C to +85°C
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 3.0V	125 mV/ns
Note 1: The "Absolute Maximum Ratings" are thos	e values beyond which

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteritics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

S_

DC Electrical Characteristics

Symbol	Parameter	V _{cc} (V)	-		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions	
		(•)	Typ Gu		aranteed Limits			
V _{IH}	Minimum High Level	3.0	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$	
V _{IL}	Maximum Low Level Input Voltage	3.0	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$	
V _{OH}	Minimum High Level	3.0	2.99	2.9	2.9	V	I _{OUT} = -50 μA	
	Output Voltage	3.0		2.58	2.48	V	$V_{IN} = V_{IL} \text{ or } V_{IH} \text{ (Note 3)}$ $I_{OH} = -12 \text{ mA}$	
V _{OL}	Maximum Low Level	3.0	0.002	0.1	0.1	V	I _{OUT} = 50 μA	
Output Voltag	Output Voltage	3.0		0.36	0.44	V	$V_{IN} = V_{IL} \text{ or } V_{IH} \text{ (Note 3)}$ $I_{OL} = 12 \text{ mA}$	
I _{IN}	Maximum Input Leakage Current	3.6		±0.1	±1.0	μA	$V_{I} = V_{CC}, GND$	
I _{OLD}	Minimum Dynamic (Note 4)	3.6			36	mA	V _{OLD} = 0.8V Max (Note 5)	
I _{OHD}	Output Current	3.6			-25	mA	V _{OHD} = 2.0V Min (Note 5)	
I _{CC}	Maximum Quiescent Supply Current	3.6		2.0	20.0	μA	V _{IN} = V _{CC} or GND	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.2	0.8		V	(Notes 6, 7)	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.2	-0.8		V	(Notes 6, 7)	
V _{IHD}	Maximum High Level Dynamic Input Voltage	3.3	1.7	2.0		V	(Notes 6, 8)	
V _{ILD}	Maximum Low Level Dynamic Input Voltage	3.3	1.6	0.8		V	(Notes 6, 8)	

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: Incident wave switching on transmission lines with impedances as low as 75Ω for commercial temperature range is guaranteed for 74LVQ.

Note 6: Worst case package.

Note 7: Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V; one output at GND.

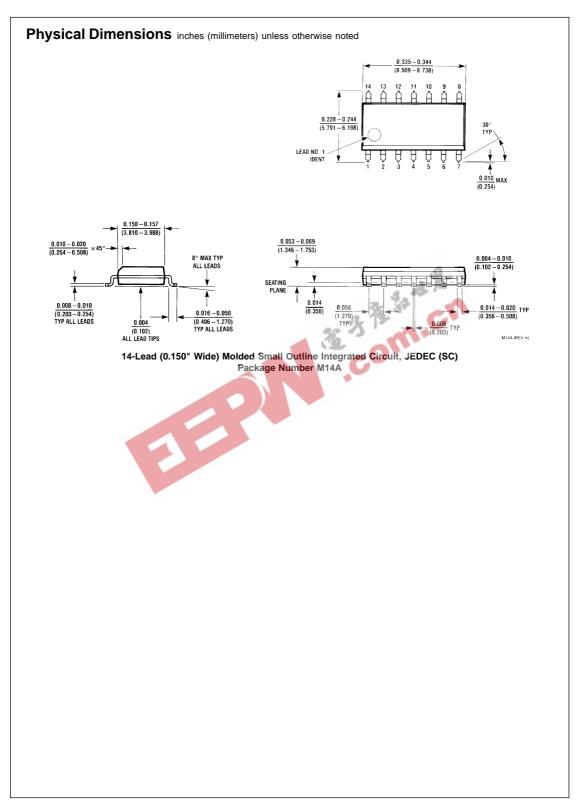
Note 8: Max number of Data Inputs (n) switching. (n - 1) inputs switching 0V to 3.3V. Input-under-test switching: 3.3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1 MHz.

Symbol	Parameter	V _{cc} (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Units
			Min	Тур	Max	Min	Max	
f _{max}	Maximum Clock	2.7	50	100		40		MHz
	Frequency	3.3 ±0.3	100	125		95		
t _{PLH}	Propagation Delay	2.7	3.5	9.6	16.9	3.5	19.0	ns
	\overline{C}_{Dn} or \overline{S}_{Dn} to Q_n	3.3 ± 0.3	3.5	8.0	12.0	2.5	13.0	
t _{PHL}	Propagation Delay	2.7	4.0	12.6	16.9	3.5	19.0	ns
	\overline{C}_{Dn} or \overline{S}_{Dn} to Q_n	3.3 ±0.3	4.0	10.5	12.0	3.5	13.5	
t _{PLH}	Propagation Delay	2.7	4.5	9.6	19.0	4.0	23.0	ns
	CP_n to Q_n or \overline{Q}_n	3.3 ±0.3	4.5	8.0	13.5	4.0	16.0	
t _{PHL}	Propagation Delay	2.7	3.5	9.6	19.7	3.5	21.0	ns
	CP_n to Q_n or \overline{Q}_n	3.3 ±0.3	3.5	8.0	14.0	3.5	14.5	
t _{OSHL}	Output to Output Skew (Note 9)	2.7		1.0	1.5		1.5	ns
toslh	Data to Output	3.3 ±0.3		1.0	1.5		1.5	

AC Electrical Characteristics

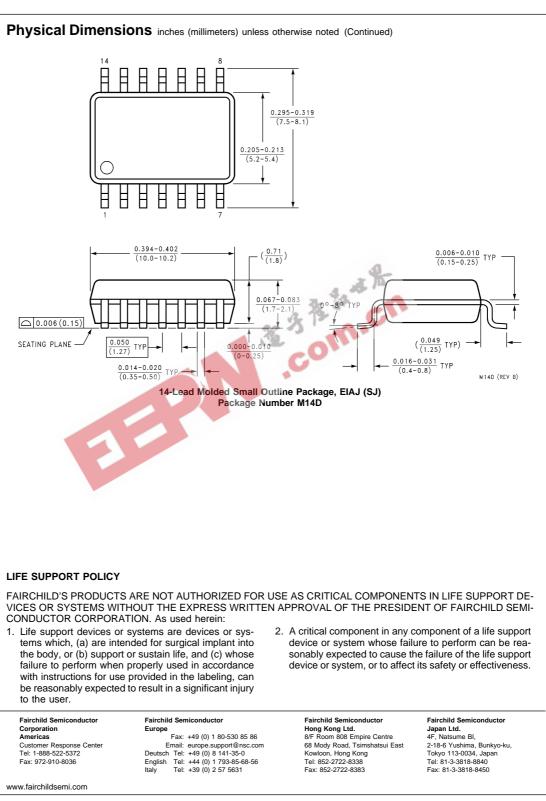
 Open
 Dot 0 State
 0.0 20.0
 1.0
 1.2
 1.5

 Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (toSHL) or LOW to HIGH (toSLH). Parameter guaranteed by design.


 AC Operating Requirements

Symbol	Parameter	V _{cc} (V)	T _A = +25°C C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF	Units
			Тур	Guar	anteed Minimum	
t _S	Set-up Time, HIGH or LOW	2.7	1.8	5.0	6.5	ns
		3.3 ±0.3	1.5	4.0	4.5	
t _H	Hold Time, HIGH or LOW	2.7	-2.4	0.5	0.5	ns
	D _n to CP _n	3.3 ±0.3	-2.0	0.5	0.5	
t _W	Pulse Width	2.7	3.6	7.0	10.0	ns
		3.3 ±0.3	3.0	5.5	7.0	
t _{rec}	Recovery Time	2.7	-3.0	0	0	ns
I		3.3 ±0.3	-2.5	0	0	

Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = Open
C _{PD} (Note 10)	Power Dissipation Capacitance	25	pF	V _{CC} = 3.3V

Note 10: C_{PD} is measured at 10 MHz.

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.