

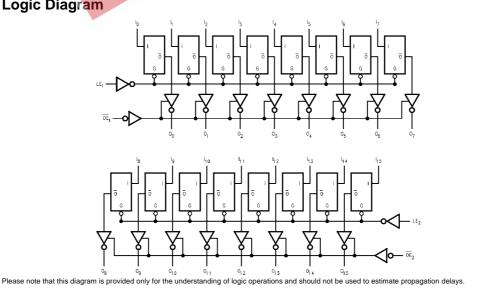
Connection Diagram						
Connection D $\overline{DE_1} = 0_0$ $0_1 = 0_0$ $0_2 = 0_3$ $V_{CC} = 0_4$ $0_4 = 0_5$ $GND = 0_6$ $0_7 = 0_7$ $0_8 = 0_9$ $GND = 0_1$ $0_1 = 0_1$	1 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 16 33 17 32 18 31 19 30 20 29 21 28 22 27 23 26 24 25	 _				
		1				

Truth Tables

	Inputs		Outputs
LE ₁	OE ₁	I ₀ —I ₇	0 ₀ –0 ₇
Х	Н	Х	Z
н	L	L	L
н	L	Н	н
L	L	х	O ₀
	Inputs		Outputs
LE ₂	Inputs OE ₂	I ₈ –I ₁₅	Outputs O ₈ –O ₁₅
LE ₂ X		I ₈ –I ₁₅ X	-
-	OE ₂		0 ₈ –0 ₁₅
X	OE ₂ H	X	0 ₈ -0 ₁₅ Z

= HIGH Voltage Level н = LOW Voltage

= Immaterial (HIGH or LOW, control inputs may not float)


z = High Imped = Previous O0 before HIGH-to-LOW of Latch Enable O

Functional Description

The 74VCXH16373 contains sixteen edge D-type latches with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable (LE_n) input is HIGH, data on the In enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time

its I input changes. When LE_n is LOW, the latches store information that was present on the I inputs a setup time preceding the HIGH-to-LOW transition on LEn. The 3-STATE outputs are controlled by the Output Enable $(\overline{\text{OE}}_n)$ input. When \overline{OE}_n is LOW the standard outputs are in the 2state mode. When $\overline{\text{OE}}_n$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	
OE _n , LE _n	-0.5V to 4.6V
$I_0 - I_{15}$	$-0.5 V$ to $V_{CC} + 0.5 V$
Output Voltage (V _O)	
Outputs 3-STATED	-0.5V to +4.6V
Outputs Active (Note 2)	–0.5V to V _{CC} +0.5V
DC Input Diode Current (I _{IK})	
$V_{I} < 0V$	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
$V_{O} > V_{CC}$	+50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Recommended Operatin Conditions (Note 3)	ng
Power Supply	
Operating	1.65V to 3.6V
Data Retention Only	1.2V to 3.6V
Input Voltage	–0.3V to V_{CC}
Output Voltage (V _O)	
Output in Active States	0V to V_{CC}
Output in "OFF" State	0.0V to 3.6V
Output Current in I _{OH} /I _{OL}	
$V_{CC} = 3.0V$ to $3.6V$	±24 mA
$V_{CC} = 2.3V$ to 2.7V	±18 mA
$V_{CC} = 1.65V$ to 2.3V	±6 mA
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta t/\Delta V$)	
V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V	10 ns/V
Note 1: The Absolute Maximum Ratings are thos the safety of the device cannot be guaranteed. The operated at these limits. The parametric values of Characteristics tables are not guaranteed at the A ings. The "Recommended Operating Conditions" tal tions for actual device operation.	e device should not be lefined in the Electrical lubsolute Maximum Rat- ble will define the condi-
Note 2: IO Absolute Maximum Rating must be obse	
Note 3: Floating or unused inputs must be held HIC	GH or LOW.

74VCXH16373

DC Electrical Characteristics (2.7V < $V_{CC} \le 3.6V$)

Symbol	Parameter		Conditions	V _{cc} (V)	Min	Max	Units	
V _{IH}	HIGH Level Input Voltage			2.7-3.6	2.0		V	
V _{IL}	LOW Level Input Voltage			2.7-3.6		0.8	V	
V _{OH}	HIGH Level Output Voltage		I _{OH} = -100 μA	2.7-3.6	V _{CC} - 0.2		V	
			$I_{OH} = -12 \text{ mA}$	2.7	2.2		V	
			I _{OH} = -18 mA	3.0	2.4		V	
			I _{OH} = -24 mA	3.0	2.2		V	
V _{OL}	LOW Level Output Voltage		I _{OL} = 100 μA	2.7–3.6		0.2	V	
			I _{OL} = 12 mA	2.7		0.4	V	
			I _{OL} = 18 mA	3.0		0.4	V	
			$I_{OL} = 24 \text{ mA}$	3.0		0.55	V	
I _I	Input Leakage Current	Control Pins	$0 \le V_I \le 3.6V$	2.7-3.6		±5.0	μΑ	
		Data Pins	$V_I = V_{CC}$ or GND	2.7–3.6		±5.0	μΑ	
I _{I(HOLD)}	Bushold Input Minimum		$V_{IN} = 0.8V$	3.0	75		μΑ	
	Drive Hold Current		$V_{IN} = 2.0V$	3.0	-75			
I _{I(OD)}	Bushold Input Over-Drive		(Note 4)	3.6	450		μA	
	Current to Change State		(Note 5)	3.6	-450		μΛ	
l _{oz}	3-STATE Output Leakage		$0 \le V_O \le 3.6V$	2.7-3.6		±10	μA	
			$V_I = V_{IH} \text{ or } V_{IL}$	2.7-3.0		10	μΛ	
OFF	Power-OFF Leakage Current		$0 \le (V_0) \le 3.6V$	0		10	μΑ	
lcc	Quiescent Supply Current		$V_I = V_{CC}$ or GND	2.7-3.6		20	μΑ	
			$V_{CC} \le (V_O) \le 3.6V$ (Note 6)	2.7–3.6		±20	μΑ	
۵l _{CC}	Increase in I _{CC} per Input		$V_{IH} = V_{CC} - 0.6V$	2.7-3.6	1	750	μΑ	

Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 6: Outputs disabled or 3-STATE only.

74VCXH16373

DC Electrical Characteristics (2.3V \leq V_{CC} \leq 2.7V) V _{CC} (V) Symbol Parameter Conditions Min Max Units V_{IH} HIGH Level Input Voltage 2.3 - 2.7 1.6 V V_{IL} LOW Level Input Voltage 2.3 - 2.7 0.7 V $I_{OH} = -100 \ \mu A$ VOH HIGH Level Output Voltage 2.3 - 2.7 $V_{CC} - 0.2$ V $I_{OH} = -6 \text{ mA}$ 2.3 2.0 V $I_{OH} = -12 \text{ mA}$ 2.3 1.8 V $I_{OH} = -18 \text{ mA}$ 2.3 1.7 V LOW Level Output Voltage 23 - 2702 VOL V $I_{OL}=100\;\mu A$ I_{OL} = 12 mA 2.3 0.4 V I_{OL} = 18 mA 2.3 0.6 V Input Leakage Current $0 \le V_I \le 3.6V$ Control Pins 2.3 - 2.7 ±5.0 μA II. Data Pins $V_I = V_{CC}$ or GND 2.3 - 2.7 ±5.0 μΑ Bushold Input Minimum 45 $V_{IN} = 0.7V$ 2.3 II(HOLD) μΑ Drive Hold Current $V_{IN} = 1.6V$ 2.3 -45 I_{I(OD)} Bushold Input Over-Drive (Note 7) 2.7 300 μΑ (Note 8) 2.7 -300 Current to Change State 3-STATE Output Leakage I_{OZ} $0 \leq V_O \leq 3.6V$ 2.3 - 2.7 μΑ ±10 $V_I = V_{IH} \text{ or } V_{IL}$ 0 Power-OFF Leakage Current $0 \leq (V_O) \leq 3.6V$ 10 μΑ $\mathsf{I}_{\mathsf{OFF}}$ Quiescent Supply Current $V_I = V_{CC}$ or GND 2.3 – 2.7 20 μA I_{CC} $V_{CC} \le (V_O) \le 3.6V$ (Note 9) 2.3 - 2.7 ±20 μΑ nt to switch from LOW-to-HIGH Note 7: An external driver must source at least the specified cur

Note 8: An external driver must sink at least the specified current to switch from HIGH-to-LOW Note 9: Outputs disabled or 3-STATE only.

DC Electrical Characteristics (1.65V \leq V_{CC} < 2.3V)

Symbol	Parameter		Conditions	V _{CC} (V)	Min	Max	Units	
VIH	HIGH Level Input Voltage			1.65 - 2.3	$0.65 imes V_{CC}$		V	
VIL	LOW Level Input Voltage			1.65 - 2.3		$0.35 \times V_{CC}$	V	
V _{OH}	HIGH Level Output Voltage		I _{OH} = -100 μA	1.65 - 2.3	V _{CC} - 0.2		V	
			I _{OH} = -6 mA	1.65	1.25		V	
V _{OL}	LOW Level Output Voltage		I _{OL} = 100 μA	1.65 - 2.3		0.2	V	
			I _{OL} = 6 mA	1.65		0.3	V	
l _l	Input Leakage Current	Control Pins	$0 \le V_I \le 3.6V$	1.65 – 2.3		±5.0	μA	
		Data Pins	$V_I = V_{CC}$ or GND	1.65 – 2.3		±5.0	μA	
I _{I(HOLD)}	Bushold Input Minimum		V _{IN} = 0.57V	1.65	25			
	Drive Hold Current		V _{IN} = 1.07V	1.65	-25		μΑ	
I _{I(OD)}	Bushold Input Over-Drive		(Note 10)	1.95	200			
	Current to Change State		(Note 11)	1.95	-200		μA	
I _{OZ}	3-STATE Output Leakage		$0 \le V_O \le 3.6V$	4.05.0.0		140		
			$V_I = V_{IH} \text{ or } V_{IL}$	1.65 - 2.3		±10	μA	
I _{OFF}	Power-OFF Leakage Current		$0 \le (V_O) \le 3.6V$	0		10	μA	
Icc	Quiescent Supply Current		$V_I = V_{CC}$ or GND	1.65 - 2.3		20	μA	
			$V_{CC} \le (V_{O}) \le 3.6V$ (Note 12)	1.65 - 2.3		±20	μA	

Note 10: An external driver must source at least the specified current to switch from LOW-to-HIGH.

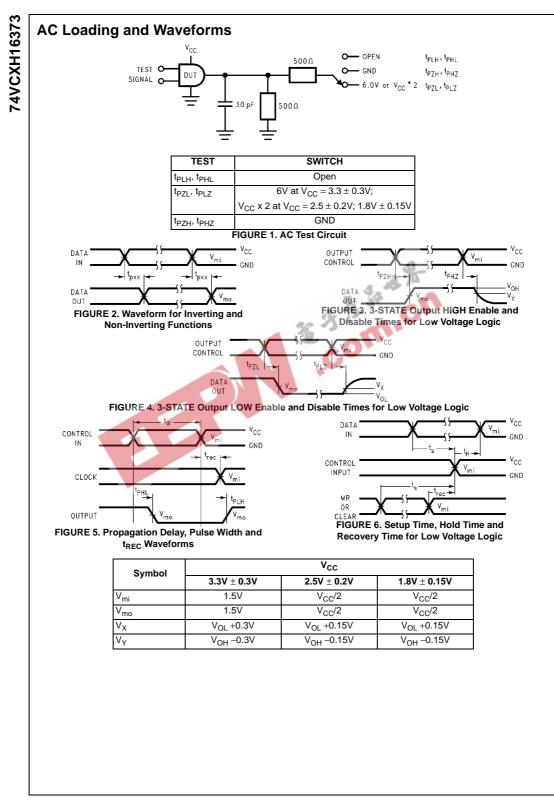
Note 11: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

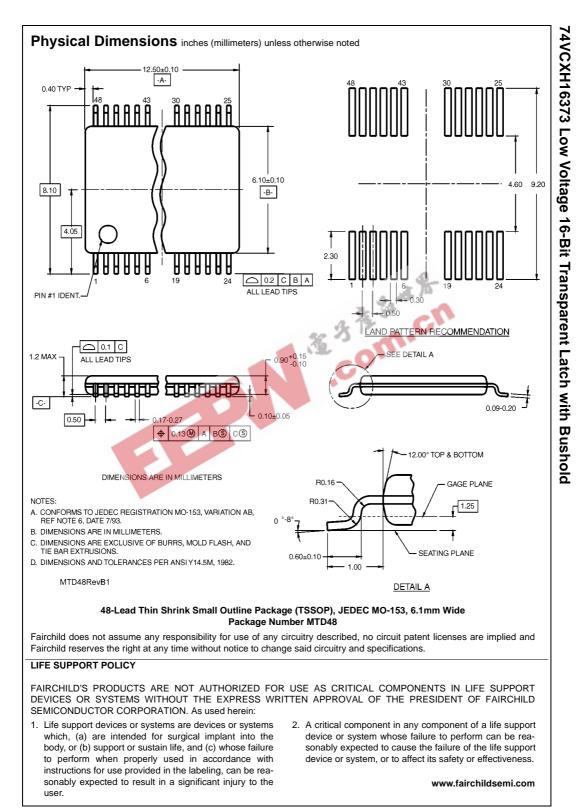
Note 12: Outputs disabled or 3-STATE only.

AC Electrical Characteristics (Note 13)

			T $_{A}$ = -40°C to +85°C, C $_{L}$ = 30 pF, R $_{L}$ = 500 Ω					
Symbol	Parameter	V _{CC} = 3.	V $_{CC}$ = 3.3V \pm 0.3V		V $_{CC}$ = 2.5V \pm 0.2V		V $_{CC}$ = 1.8V \pm 0.15V	
		Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Prop Delay I _n to O _n	0.8	3.0	1.0	3.4	1.5	6.8	ns
t _{PHL} , t _{PLH}	Prop Delay LE to O _n	0.8	3.0	1.0	3.9	1.5	7.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	0.8	3.5	1.0	4.6	1.5	9.2	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	0.8	3.5	1.0	3.8	1.5	6.8	ns
t _S	Setup Time	1.5		1.5		2.5		ns
t _H	Hold Time	1.0		1.0		1.0		ns
t _W	Pulse Width	1.5		1.5		4.0		ns
t _{OSHL}	Output to Output Skew		0.5		0.5	0.75	0.75	ns
t _{OSLH}	(Note 14)		0.5	0.5	0.75	ns		

Note 13: For $C_L = 50_PF$, add approximately 300 ps to the AC maximum specification.


Note 14: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Dynamic Switching Characteristics

Dynai	nic Switching Characte	ristics	2		
Symbol	Parameter	Conditions	V _{CC} (V)	$\frac{T_A = +25^{\circ}C}{Typical}$	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0 \text{V}$	1.8	0.25	
		30 3	2.5	0.6	V
			3.3	0.8	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.25	
			2.5	-0.6	V
			3.3	-0.8	
V _{OHV}	Quiet Output Dynamic Valley VOH	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.5	
			2.5	1.9	V
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	$T_A = +25^{\circ}C$	Units
Symbol		Contactions		Ginto
CIN	Input Capacitance	V_{CC} = 1.8V, 2.5V or 3.3V, V_I = 0V or V_{CC}	6	pF
C _{OUT}	Output Capacitance	$V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	7	pF
C _{PD}	Power Dissipation Capacitance	$V_{I} = 0V \text{ or } V_{CC}, f = 10 \text{ MHz},$ $V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	20	pF

