

54F/74F219 64-Bit Random Access Memory with TRI-STATE® Outputs

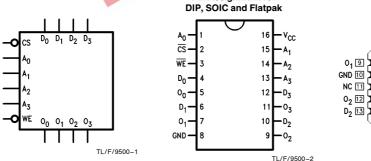
General Description

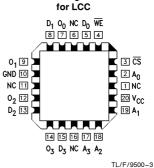
The 'F219 is a high-speed 64-bit RAM organized as a 16-word by 4-bit array. Address inputs are buffered to minimize loading and are fully decoded on-chip. The outputs are TRI-STATE and are in the high-impedance state whenever the Chip Select (\overline{CS}) input is HIGH. The outputs are active only in the Read mode. This device is similar to the 'F189 but features non-inverting, rather than inverting, data outputs.

Features

- TRI-STATE outputs for data bus applications
- Buffered inputs minimize loading
- Address decoding on-chip
- Diode clamped inputs minimize ringing
- Available in SOIC (300 mil only)

Commercial	Military	Package Number	Package Description			
74F219PC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line			
	54F219DL (Note 2)	J16A	16-Lead Ceramic Dual-In-Line			
74F219SC (Note 1)		M16B	16-Lead (0.300" Wide) Molded Small Outline, JEDEC			
74F219SJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ			
	54F219FL (Note 2)	W16A	16-Lead Cerpack			
	54F219LL (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C			


Pin Assignment for


Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

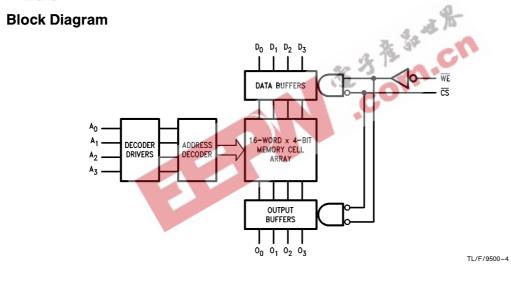
Note 2: Military grade device with environmental and burn-in processing. Use suffix = DLQB, FLQB and LLQB.

Logic Symbol

Connection Diagrams

Pin Assignment

TRI-STATE® is a registered trademark of National Semiconductor Corporation.


Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
A ₀ -A ₃	Address Inputs	1.0/1.0	20 μA/ – 0.6 mA		
CS	Chip Select Input (Active LOW)	1.0/2.0	20 μA/ – 1.2 mA		
WE	Write Enable Input (Active LOW)	1.0/1.0	20 μA/ -0.6 mA		
D ₀ -D ₃	Data Inputs	1.0/1.0	20 μA/ -0.6 mA		
O ₀ -O ₃	TRI-STATE Data Outputs	150/40 (33.3)	−3 mA/24 mA (20 mA)		

Function Table

Inputs		Operation	Condition of Outputs				
CS	WE	Operation	Containion of Outputs				
L	L	Write	High Impedance				
L	Н	Read	True Stored Data				
Н	X	Inhibit	High Impedance				

- $$\begin{split} H &= \text{HIGH Voltage Level} \\ L &= \text{LOW Voltage Level} \\ X &= \text{Immaterial} \end{split}$$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to} + 125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to} + 175^{\circ}\mbox{C} \\ \mbox{Plastic} & -55^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \end{array}$

 $\begin{array}{lll} \text{V}_{\text{CC}} \text{ Pin Potential to} & & & \\ \text{Ground Pin} & & -0.5 \text{V to } +7.0 \text{V} \\ \text{Input Voltage (Note 2)} & & -0.5 \text{V to } +7.0 \text{V} \\ \text{Input Current (Note 2)} & & -30 \text{ mA to } +5.0 \text{ mA} \end{array}$

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{\text{CC}} \\ \text{TRI-STATE Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military $-55^{\circ}\text{C to} + 100^{\circ}\text{C}$ Commercial $0^{\circ}\text{C to} + 70^{\circ}\text{C}$

Supply Voltage

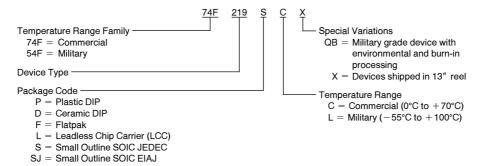
Military + 4.5V to +5.5V

Commercial + 4.5V to +5.5V

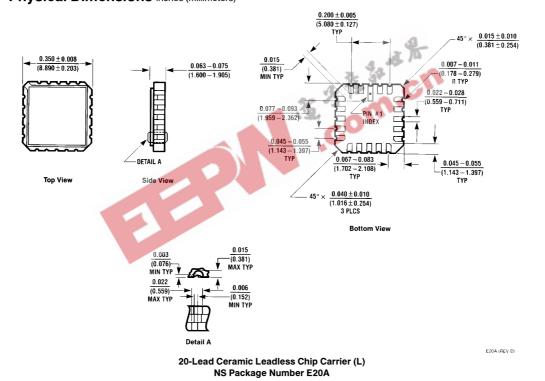
DC Electrical Characteristics

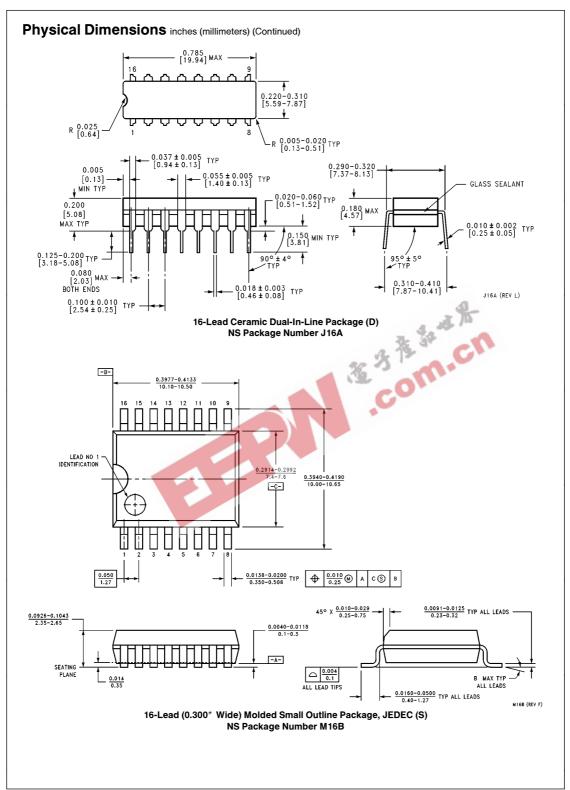
Symbol	Parameter -		54F/74F			Units	Vaa	Conditions	
Syllibol			Min	Тур	Max	Ullits	V _{CC}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V	1	Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Vo	Itage			-1.2	V	Min	I _{IN} = −18 mA	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7	1	36	o V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -3 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -3 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -3 \text{ mA}$	
V_{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{\text{ID}} = 1.9 \ \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6 -1.2	mA	Max	$V_{IN} = 0.5V (A_n, \overline{WE}, D_n)$ $V_{IN} = 0.5V (\overline{CS})$	
lozh	Output Leakage Curre	ent			50	μΑ	Max	V _{OUT} = 2.7V	
I _{OZL}	Output Leakage Curre	ent			-50	μΑ	Max	V _{OUT} = 0.5V	
los	Output Short-Circuit C	urrent	-60		-150	mA	Max	V _{OUT} = 0V	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V	
Icc	Power Supply Current			37	55	mA	Max		

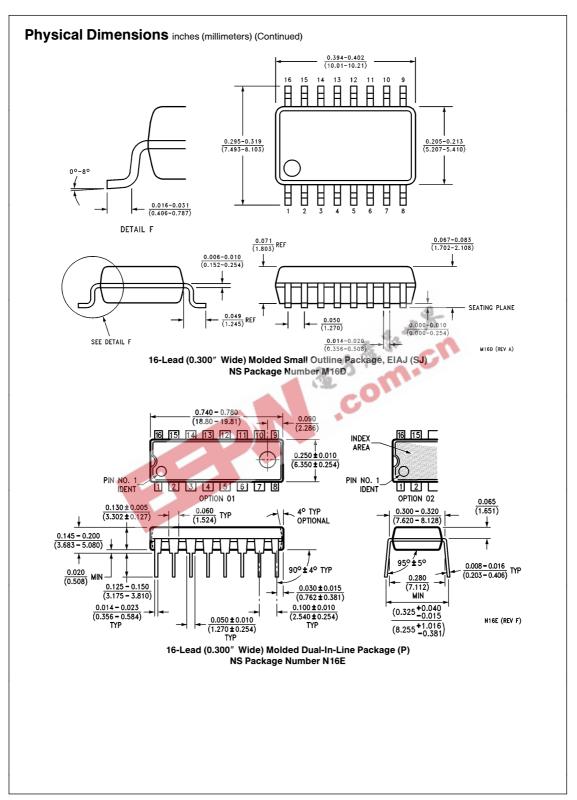
AC Electrical Characteristics


					54F		74F		Units
Symbol	Parameter				$T_{A}=+100^{\circ} C$ $V_{CC}=Mil$ $C_{L}=50~pF$		T _A , V _{CC} = Com C _L = 50 pF		
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Access Time, HIGH or LOW A_n to O_n	10.0 8.0	18.5 13.5	26.0 19.0	9.0 8.0	32.0 23.0	10.0 8.0	27.0 20.0	ns
t _{PZH}	Access Time, HIGH or LOW CS to On	3.5 5.0	6.0 9.0	8.5 13.0	3.5 5.0	10.5 15.0	3.5 5.0	9.5 14.0	ns
t _{PHZ}	Disable Time, HIGH or LOW CS to On	2.0 3.0	4.0 5.5	6.0 8.0	2.0 2.5	8.0 10.0	2.0 3.0	7.0 9.0	113
t _{PZH}	Write Recovery Time HIGH or LOW, WE to O _n	6.5 6.5	20.0 11.0	28.0 15.5	6.5 6.5	37.5 17.5	6.5 6.5	29.0 16.5	ns
t _{PHZ}	Disable Time, HIGH or LOW $\overline{\text{WE}}$ to O_{n}	4.0 5.0	7.0 9.0	10.0 13.0	3.5 5.0	12.0 15.0	4.0 5.0	11.0 14.0	113

AC Operating Requirements


		74F			54F 35.	74F		
Symbol Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		Vc	+ 100°C C = Mil	T _A , V _{CC} = Com		Units
ļ		Min	Max	Min	Max	Min	Max	
t _s (H) t _s (L)	Setup Time, HIGH or LOW A _n to WE	0 0		0	.00	0 0		ns
t _h (H)	Hold Time, HIGH or LOW A _n to WE	2.0 2.0		2.0 2.0		2.0 2.0		113
t _S (H) t _S (L)	Setup Time, HIGH or LOW D _n to WE	10.0 10.0	3	11.0 11.0		10.0 10.0		ns
t _h (H)	Hold Time, HIGH or LOW D _n to WE	0		2.0 2.0		0 0		113
t _s (L)	Setup Time, LOW CS to WE	0		0		0		ns
t _h (L)	Hold Time, LOW CS to WE	6.0		7.5		6.0		115
t _w (L)	WE Pulse Width, LOW	6.0		15.0		6.0		ns


Ordering Information


The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued) $\frac{0.050 - 0.080}{(1.270 - 2.032)}$ 0.371 - 0.390(9.423 - 9.906) $\frac{0.050\pm0.005}{(1.270\pm0.127)} \text{ TYP}$ 0.004 - 0.0060.007 - 0.018 (0.178 – 0.457) TYP $\overline{(0.102 - 0.152)}$ **←** 0.000 MIN TYP 0.250 - 0.370 (6.350 - 9.398)0.300 0.245 - 0.275(7.620) MAX GLASS $\overline{(6.223-6.985)}$ ٧ 0.008 - 0.012(0.203 - 0.305)DETAIL A PIN NO. 1 0.250 - 0.370DETAIL A IDENT (6.350 - 9.398)0.026 - 0.0400.015 - 0.019(0.381 - 0.482)(0.660 - 1.016)16-Lead Ceramic Flatpak (F) 16-Lead Ceramic Flagues W NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Europe Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-532 43 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408