

Unit Loading/Fan Out

Din Namas	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	ames Description		Output I _{OH} /I _{OL}	
CS	Chip Select Input (Active LOW)	1.0/1.0	20 µA/-0.6 mA	
SHCP	Shift Clock Pulse Input (Active Falling Edge)	1.0/1.0	20 µA/-0.6 mA	
STMR	Store Master Reset Input (Active LOW)	1.0/1.0	20 µA/-0.6 mA	
STCP	Store Clock Pulse Input	1.0/1.0	20 µA/-0.6 mA	
R/W	Read/Write Input	1.0/1.0	20 µA/-0.6 mA	
SI/O	Serial Data Input or	3.5/1.0	70 μA/–0.6 mA	
	3-STATE Serial Output	150/40	–3 mA/24 mA	
Q ₀ –Q ₁₅	Parallel Data Outputs	50/33.3	–1 mA/20 mA	

Functional Description

The 16-bit shift register operates in one of four modes, as indicated in the Shift Register Operations Table. A HIGH signal on the Chip Select (\overline{CS}) input prevents clocking and forces the Serial Input/Output (SI/O) 3-STATE buffer into the high impedance state. During serial shift-out operations, the SI/O buffer is active (i.e., enabled) and the output data is also recirculated back into the shift register. When parallel loading the shift register from the storage register, serial shifting is inhibited.

The storage register has an asynchronous master reset (STMR) input that overrides all other inputs and forces the Q_0-Q_{15} outputs LOW. The storage register is in the Hold mode when either \overline{CS} or the Read/Write (R/ \overline{W}) input is HIGH. With \overline{CS} and R/ \overline{W} both LOW, the storage register is parallel loaded from the shift register.

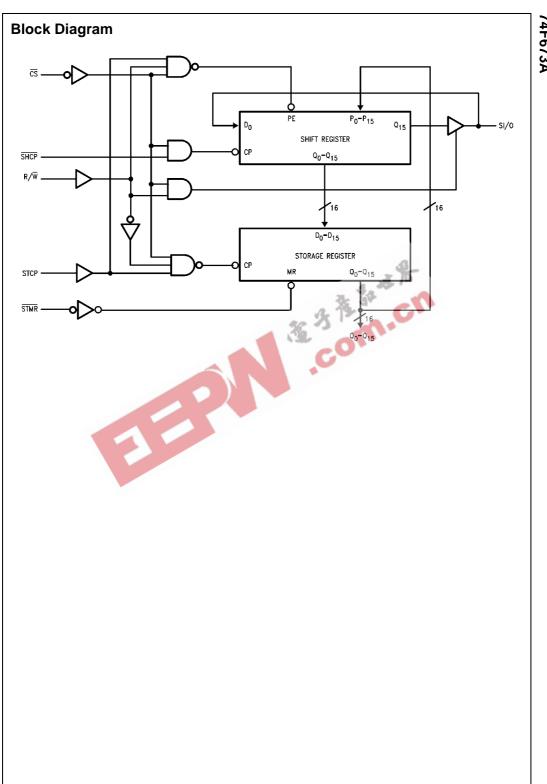
Shift Register Operations Table

	Control Input			SI/O	Oneverting Marks
CS	R/W	SHCP	STCP	Status	Operating Mode
Н	Х	Х	Х	High Z	Hold
L	L		X	Data In	Serial Load
L	н	7	E	Data Out	Serial Output
					with Recirculation
L	Н	~	Н	Active	Parallel Load;
					No Shifting

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

~ = HIGH-to-LOW Transition


Storage Register Operations Table

	Contro	l Inputs	Operating	
STMR	CS	R/W	STCP	Mode
L	Х	Х	Х	Reset; Outputs LOW
Н	н	Х	Х	Hold
н	х	н	Х	Hold
Н	L	L	<i>_</i>	Parallel Load

H = HIGH Voltage Level L = LOW Voltage Level

122

X = Immaterial $\mathcal{I} = \text{LOW-to-HIGH Transition}$

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)

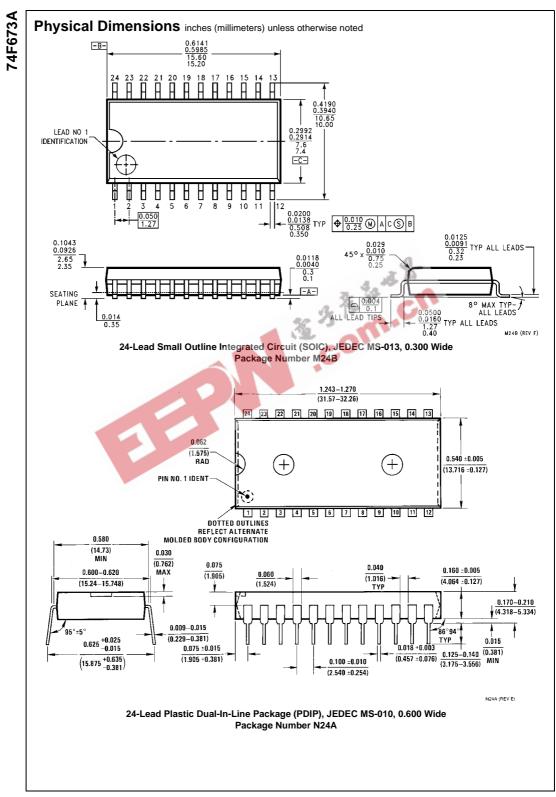
Recommended Operating Conditions

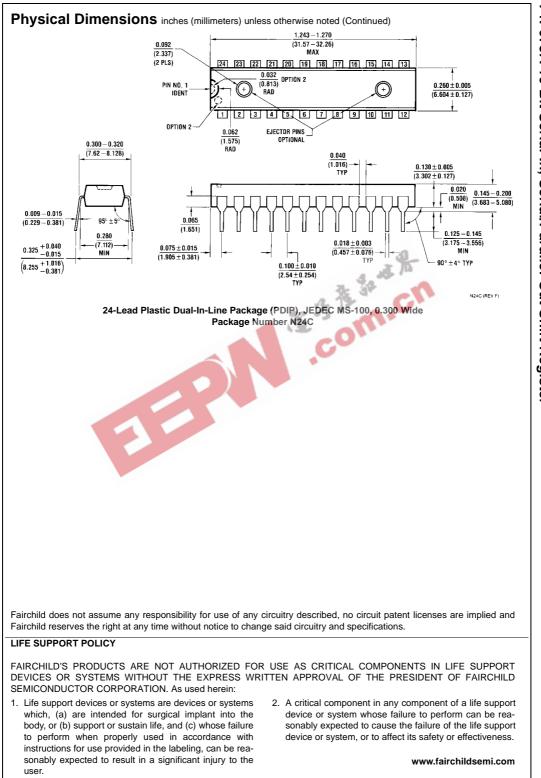
Free Air Ambient Temperature Supply Voltage

0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter	Min	Тур	Max	Units	Vcc	Conditions
V _{IH}	Input HIGH Voltage	2.0			V	lu	Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA (Non I/O pins)
V _{OH}	Output HIGH 10% V _{CC}	2.5	30	2	-		I _{OH} = -1 mA (Q _n , SI/O)
	Voltage 10% V _{CC}	2.4			V	Min	I _{OH} = -3 mA (SI/O)
	5% V _{CC}	2.7		<i>"</i> •O	v	IVIIII	$I_{OH} = -1 \text{ mA} (Q_n, \text{SI/O})$
	5% V _{CC}	2.7		0			$I_{OH} = -3 \text{ mA} (SI/O)$
V _{OL}	Output LOW 10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA (Q _n)
	Voltage 10% V _{CC}			0.5	v	IVIIII	I _{OL} = 24 mA (SI/O)
I _{IH}	Input HIGH Current			20	μΑ	Max	V _{IN} = 2.7V (Non I/O pins)
I _{BVI}	Input HIGH Current			100	μA	Max	V _{IN} = 7.0V (Non I/O pins)
	Breakdown Test			100	μΑ	IVICIA	$v_{\rm IN} = 7.00$ (Non 1/O pins)
I _{BVIT}	Input HIGH Current			1.0	mA	Мах	V _{IN} = 5.5V (SI/O)
	Breakdown Test (I/O)			1.0		IVIAX	V _{IN} = 3.3V (31/0)
IIL	Input LOW Current			-0.6	mA	Max	V _{IN} = 0.5V
I _{IH} +	Output Leakage			70	μA	Мах	V _{OUT} = 2.7V (SI/O)
I _{OZH}	Current			70	μΑ	IVIAX	v _{OUT} = 2.7 v (31/0)
I _{IL} +	Output Leakage			-650	μA	Мах	V _{OUT} = 0.5V (SI/O)
I _{OZL}	Current			-030	μΑ	IVIAX	v _{OUT} = 0.3 v (31/O)
I _{OS}	Output Short-Circuit Current	-60		-150	mA	Max	V _{OUT} = 0V
ICEX	Output HIGH Leakage Current			250	μΑ	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test			500	μΑ	0.0V	V _{OUT} = 5.25V
I _{CCH}	Power Supply Current		114	172	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current		114	172	mA	Max	V _O = LOW

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	1
f _{MAX}	Maximum Clock Frequency	100	130		85		MHz
t _{PLH}	Propagation Delay	3.0	8.0	10.5	2.5	12.0	ns
t _{PHL}	STCP to Q _n	3.0	10.5	13.5	2.5	15.0	113
t _{PHL}	Propagation Delay	6.0	16.5	20.5	5.5	22.5	ns
	STMR to Q _n	0.0	10.0	20.0	0.0	22.0	
t _{PLH}	Propagation Delay	4.0	6.5	8.5	3.5	9.5	ns
t _{PHL}	SHCP to SI/O	4.5	8.0	10.5	4.0	12.0	
t _{PZH}	Output Enable Time	5.0	8.5	11.0	4.0	12.5	
t _{PZL}	CS to SI/O	5.5	9.0	11.5	4.5	13.0	
t _{PHZ}	Output Disable Time	3.5	5.5	7.5	3.0	8.5	ns
t _{PLZ}	CS to SI/O	3.0	4.5	6.5	2.5	7.5	
t _{PZH}	Output Enable Time	4.5	7.5	9.5	4.0	10.5	
t _{PZL}	R/W to SI/O	4.5	8.0	10.0	4.0	11.5	
t _{PHZ}	Output Disable Time	3.0	5.5	7.0	2.5	8.0	ns
t _{PLZ}	R/W to SI/O	2.5	4.0	5.5	2.0	6.5	

AC	Operating	Requirements
----	-----------	--------------

Symbol	Parameter		T _A = +25°C V _{CC} = +5.0V		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$		
		Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH or LOW	3.5		4.0			
t _S (L)	CS or R/W to STCP	6.0		7.0		ns	
t _H (H)	Hold Time, HIGH or LOW	0		0			
t _H (L)	CS or R/W to STCP	0		0			
t _S (H)	Setup Time, HIGH or LOW	3.0		3.5			
t _S (L)	SI/O to SHCP	3.0		3.5			
t _H (H)	Hold Time, HIGH or LOW	3.0		3.5		ns	
t _H (L)	SI/O to SHCP	3.0		3.5			

74F673A 16-Bit Serial-In, Serial/Parallel-Out Shift Register