Octal Bus Buffer # Inverting The MC74LVX540 is an advanced high speed CMOS inverting octal bus buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The MC74LVX540 features inputs and outputs on opposite sides of the package and two AND-ed active-low output enables. When either OE1 or OE2 are high, the terminal outputs are in the high impedance state. The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems. #### **Features** - High Speed: $t_{PD} = 5.0 \text{ ns}$ (Typ) at $V_{CC} = 3.3 \text{ V}$ - Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25$ °C - High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% \ V_{CC}$ - Power Down Protection Provided on Inputs - Balanced Propagation Delays - Designed for 2.0 V to 3.6 V Operating Range - Low Noise: $V_{OLP} = 1.2 \text{ V (Max)}$ - Pin and Function Compatible with Other Standard Logic Families - Latchup Performance Exceeds 300 mA - Chip Complexity: 124 FETs or 31 Equivalent Gates - ESD Performance: Human Body Model > 2000 V; Machine Model > 200 V • Pb-Free Packages are Available* http://onsemi.com #### **MARKING DIAGRAMS** = Assembly Location L, WL = Wafer Lot Y, YY Year = Work Week W. WW ### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Figure 2. PIN ASSIGNMENT Figure 3. IEC LOGIC DIAGRAM ## **FUNCTION TABLE** | | Inputs | Output V | | |-----|--------|----------|---------------------------| | OE1 | OE2 | Α | Output \(\overline{Y} \) | | L | L | L | Н | | L | L | Н | L | | Н | Χ | Х | Z | | X | Н | Х | Z | #### **MAXIMUM RATINGS** | Symbol | Paramete | 7 | Value | Unit | |------------------|---|----------------------------------|---------------|------| | V _{CC} | DC Supply Voltage | - 0.5 to + 7.0 | V | | | V _{in} | DC Input Voltage | - 0.5 to + 7.0 | V | | | V _{out} | DC Output Voltage | -0.5 to $V_{CC} + 0.5$ | V | | | I _{IK} | Input Diode Current | -20 | mA | | | I _{OK} | Output Diode Current | ±20 | mA | | | I _{out} | DC Output Current, per Pin | | ±25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND Pins | | ±75 | mA | | P _D | Power Dissipation in Still Air, | SOIC Packages†
TSSOP Package† | 500
450 | mW | | T _{stg} | Storage Temperature | | - 65 to + 150 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and Vout should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. †Derating — SOIC Packages: – 7 mW/°C from 65° to 125°C TSSOP Package: - 6.1 mW/°C from 65° to 125°C #### RECOMMENDED OPERATING CONDITIONS | RECOMMENDED OPERATING CONDITIONS | | | | | | | | | |----------------------------------|--|-----|-----|------|--|--|--|--| | Symbol | Parameter | Min | Max | Unit | | | | | | V _{CC} | DC Supply Voltage | 2.0 | 3.6 | V | | | | | | V _{in} | DC Input Voltage | 0 | 5.5 | V | | | | | | V _{out} | DC Output Voltage | 0 | Vcc | V | | | | | | T _A | Operating Temperature, All Package Types | -40 | +85 | °C | | | | | | t _r , t _f | Input Rise and Fall Time V_{CC} = 3.3 V \pm 0.3 V (See Figure 4) | 0 | 100 | ns/V | | | | | ## **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|------------------------|-----------------------| | MC74LVX540M | SOEIAJ-20 | 50 Units / Rail | | MC74LVX540MG | SOEIAJ-20
(Pb-Free) | 50 Units / Rail | | MC74LVX540MEL | SOEIAJ-20 | 2000 Tape & Reel | | MC74LVX540MELG | SOEIAJ-20
(Pb-Free) | 2000 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # DC ELECTRICAL CHARACTERISTICS | | | V _{cc} | | T _A = 25°C | | | T _A = - 40 to 85°C | | | |-----------------|----------------------------------|---|-------------------|-----------------------|------------|----------------------|-------------------------------|----------------------|------| | Symbol | Parameter | Test Conditions V | | Min | Тур | Max | Min | Max | Unit | | V _{IH} | Minimum High-Level Input Voltage | | 2.0
3.0
3.6 | 1.50
2.0
2.4 | | | 1.50
2.0
2.4 | | V | | V _{IL} | Maximum Low-Level Input Voltage | | 2.0
3.0
3.6 | | | 0.50
0.80
0.80 | | 0.50
0.80
0.80 | V | | V _{OH} | | $I_{OH} = -50 \mu A$
$I_{OH} = -50 \mu A$
$I_{OH} = -4 mA$ | 2.0
3.0
3.0 | 1.9
2.9
2.58 | 2.0
3.0 | | 1.9
2.9
2.48 | | V | | V _{OL} | | $I_{OL} = 50 \mu A$ $I_{OL} = 50 \mu A$ $I_{OL} = 4 \text{ mA}$ | 2.0
3.0
3.0 | | 0.0
0.0 | 0.1
0.1
0.36 | | 0.1
0.1
0.44 | V | | I _{in} | Maximum Input Leakage Current | V _{in} = 5.5 V or GND | 0 to
3.6 | | | ±0.
1 | | ±1.0 | μΑ | | I _{OZ} | Maximum 3-State Leakage Current | $V_{in} = V_{IL} \text{ or } V_{IH}$
$V_{out} = V_{CC} \text{ or GND}$ | 3.6 | | | ± 0.
25 | | ±2.5 | μΑ | | Icc | Maximum Quiescent Supply Current | V _{in} = V _{CC} or GND | 3.6 | | - B | 4.0 | | 40.0 | μΑ | # AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$) | | | | 1 % | 30 | A = 25° | С | $T_A = -40$ | 0 to 85°C | | |--|---|---|--|-----|-------------|--------------|-------------|--------------|------| | Symbol | Parameter | Test Cond | litions | Min | Тур | Max | Min | Max | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, A to \overline{Y} (Figures 4 and 6) | V _{CC} = 2.7 V | C _L = 15 pF
C _L = 50 pF | | 6.2
8.5 | 11.3
14.9 | 1.0
1.0 | 13.5
17.0 | ns | | | | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ | $C_L = 15 \text{ pF}$
$C_L = 50 \text{ pF}$ | | 5.0
6.8 | 7.0
10.5 | 1.0
1.0 | 8.5
12.0 | | | t _{PZL} ,
t _{PZH} | Output Enable Time, OEn to Ÿ (Figures 5 and 7) | $V_{CC} = 2.7 \text{ V}$ $R_L = 1 \text{ k}\Omega$ | $C_L = 15 pF$
$C_L = 50 pF$ | | 9.5
11.2 | 13.8
17.3 | 1.0
1.0 | 16.5
20.0 | ns | | | | $V_{CC} = 3.3 \pm 0.3 \text{ V}$
$R_L = 1 \text{k }\Omega$ | $C_L = 15 \text{ pF}$
$C_L = 50 \text{ pF}$ | | 7.0
8.8 | 10.5
14.0 | 1.0
1.0 | 12.5
16.0 | | | t _{PLZ} ,
t _{PHZ} | Output Disable Time,
OEn to Y
(Figures 5 and 7) | $V_{CC} = 2.7 \text{ V}$ $R_L = 1 \text{ k}\Omega$ | C _L = 50 pF | | 9.8 | 17.9 | 1.0 | 20.0 | ns | | | | $V_{CC} = 3.3 \pm 0.3 \text{ V}$
$R_L = 1 \text{ k}\Omega$ | C _L = 50 pF | | 8.7 | 15.4 | 1.0 | 17.5 | | | t _{OSLH} ,
t _{OSHL} | Output to Output Skew | V _{CC} = 2.7 V
(Note 1) | C _L = 50 pF | | | 1.5 | | 1.5 | ns | | | | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ (Note 1) | C _L = 50 pF | | | 1.5 | | 1.5 | ns | | C _{in} | Maximum Input Capacitance | | | | 4 | 10 | | 10 | pF | | C _{out} | Maximum Three–State Output
Capacitance (Output in High
Impedance State) | | | | 6 | | | | pF | | | | Typical @ 25°C, V _{CC} = 5.0 V | | | |----------|--|---|----|--| | C_{PD} | Power Dissipation Capacitance (Note 2) | 17 | pF | | Parameter guaranteed by design. t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC} / 8 (per bit). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. # NOISE CHARACTERISTICS (Input t_{f} = t_{f} = 3.0 ns, C_{L} = 50 pF, V_{CC} = 3.3 V) | | T _A = 25°C | | 25°C | | |------------------|--|------|------|------| | Symbol | Parameter | Тур | Max | Unit | | V _{OLP} | Quiet Output Maximum Dynamic V _{OL} | 0.5 | 0.8 | V | | V _{OLV} | Quiet Output Minimum Dynamic V _{OL} | -0.5 | -0.8 | V | | V _{IHD} | Minimum High Level Dynamic Input Voltage | | 2.0 | V | | V_{ILD} | Maximum Low Level Dynamic Input Voltage | | 0.8 | V | ## **SWITCHING WAVEFORMS** Figure 4. Figure 5. #### TEST CIRCUITS TEST TEST POINT **POINT** CONNECT TO V_{CC} WHEN TESTING t_{PLZ} AND t_{PZL} . CONNECT TO GND WHEN 1kΩ OUTPUT OUTPUT **DEVICE** DEVICE UNDER UNDER TESTING $t_{\mbox{\footnotesize PHZ}}$ and $t_{\mbox{\footnotesize PZH}}.$ C_L^* C_L^* TEST **TEST** *Includes all probe and jig capacitance *Includes all probe and jig capacitance Figure 6. Figure 7. Figure 8. INPUT EQUIVALENT CIRCUIT #### PACKAGE DIMENSIONS ### SOIC-20 **DW SUFFIX** CASE 751D-05 ISSUE G #### **NOTES** - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION - PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | | | | |-----|--------------------|-------|--|--|--| | DIM | MIN | MAX | | | | | Α | 2.35 | 2.65 | | | | | A1 | 0.10 | 0.25 | | | | | В | B 0.35 0.49 | | | | | | С | C 0.23 0.32 | | | | | | D | 12.65 12.9 | | | | | | E. | 7.40 7 | | | | | | е | 1.27 | BSC | | | | | Н | 10.05 | 10.55 | | | | | h | h 0.25 0.75 | | | | | | L | 0.50 0.90 | | | | | | θ | 0 ° | 7 ° | | | | TSSOP-20 **DT SUFFIX** CASE 948E-02 **ISSUE B** -T- SEATING PLANE #### NOTES: - DIES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - MILLIME I ER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. - 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. - SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 BSC | | | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 | BSC | 0.252 BSC | | | M 0° 8° 0° #### PACKAGE DIMENSIONS ### SOEIAJ-20 **M SUFFIX** CASE 967-01 **ISSUE O** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR - AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). | ١ | | MILLIN | IETERS | INC | HES | | |---|----------------|--------|--------|-----------|-------|--| | L | DIM | MIN | MAX | MIN | MAX | | | | Α | | 2.05 | | 0.081 | | | | A ₁ | 0.05 | 0.20 | 0.002 | 0.008 | | | L | b | 0.35 | 0.50 | 0.014 | 0.020 | | | 1 | С | 0.18 | 0.27 | 0.007 | 0.011 | | | | D | 12.35 | 12.80 | 0.486 | 0.504 | | | | E | 5.10 | 5.45 | 0.201 | 0.215 | | | I | е | 1.27 | BSC | 0.050 BSC | | | | I | HE | 7.40 | 8.20 | 0.291 | 0.323 | | | | L | 0.50 | 0.85 | 0.020 | 0.033 | | | | LE | 1.10 | 1.50 | 0.043 | 0.059 | | | Γ | M | 0 ° | 10° | 0 ° | 10° | | | | Q_1 | 0.70 | 0.90 | 0.028 | 0.035 | | | | Z | | 0.81 | | 0.032 | | ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.