

SEMICONDUCTOR

74F825 8-Bit D-Type Flip-Flop

General Description

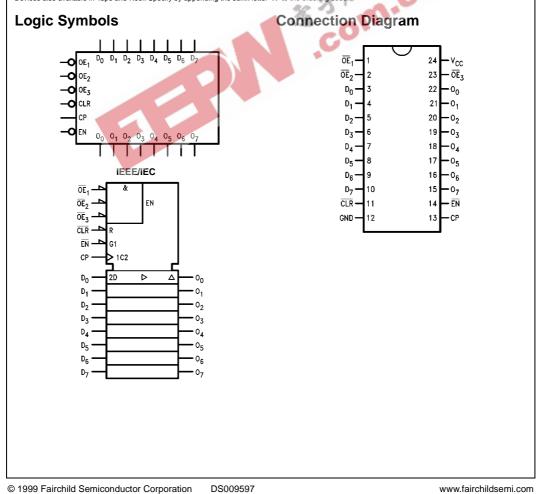
The 74F825 is an 8-bit buffered register. It has Clock Enable and Clear features which are ideal for parity bus interfacing in high performance microprogramming systems. Also included in the 74F825 are multiple enables that allow multi-user control of the interface.

Ordering Code:

Order Number	Package Number	Package Description
74F825SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F825SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Features

■ 3-STATE output


Clock enable and clear

Multiple output enables

74F825 8-Bit D-Type Flip-Flop

April 1988

Revised August 1999

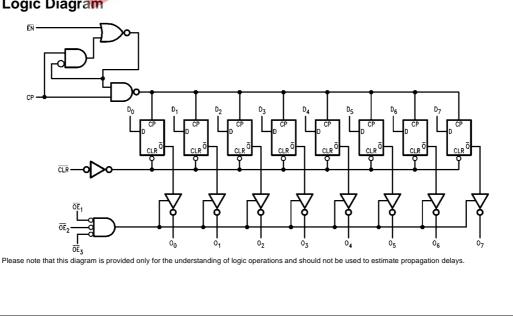
74F825

Unit Loading/Fan Out

Din Namas	Decerimtian	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL} 20 μA/-0.6 mA -3 mA/24 mA (20 mA) 20 μA/-0.6 mA 20 μA/-0.6 mA 20 μA/-0.6 mA	
D ₀ -D ₇	Data Inputs	1.0/1.0	20 µA/–0.6 mA	
O ₀ –O ₇	3-STATE Data Outputs	150/40 (33.3)	–3 mA/24 mA (20 mA)	
$\overline{OE}_1, \overline{OE}_2, \overline{OE}_3$	Output Enable Input	1.0/1.0	20 µA/–0.6 mA	
EN	Clock Enable	1.0/1.0	20 µA/–0.6 mA	
CLR	Clear	1.0/1.0	20 µA/–0.6 mA	
СР	Clock Input	1.0/2.0	20 µA/–1.2 mA	

Functional Description

The 74F825 consists of eight D-type edge-triggered flipflops. This device has 3-STATE true outputs and is organized in broadside pinning. In addition to the clock and output enable pins, the buffered clock (CP) and buffered Output Enable $\overline{(OE)}$ are common to all flip-flops. The flipflops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOWto-HIGH CP transition. With the OE LOW the contents of the flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the flipflops. The 74F825 has Clear (CLR) and Clock Enable (EN) pins.


When the CLR is LOW and the OE is LOW the outputs are LOW. When CLR is HIGH, data can be entered into the flipflops. When EN is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When the $\overline{\text{EN}}$ is HIGH the outputs do not change state, regardless of the data or clock input transitions.

Function Table

	Inp	outs			Internal	Output	Function		
OE	CLR	EN	СР	D	Q	0	Function		
Н	Н	L	Н	Х	NC	Z	Hold		
н	н	L	L.	Х	NC	z	Hold		
н	Н	見	X	Х	NC	z	Hold		
L	н	н	Х	Х	NC	NC	Hold		
H	4	Х	Х	Х	Н	Z	Clear		
1	₽ L	Х	X	Х	н	L	Clear		
н	H	ςĽ,	~	L	н	Z	Load		
н	н	L	~	Н	L	Z	Load		
L	н	L	~	L	н	L	Data Available		
L	н	L	~	н	L	н	Data Available		
L	н	L	Н	Х	NC	NC	No Change in Data		
L	н	L	L	Х	NC	NC	No Change in Data		
L = L	L = LOW Voltage Level Z = High Impedance								

H = HIGH Voltage Level X = Immaterial

= LOW-to-HIGH Transition NC = No Change

Logic Diagram

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature	
Supply Voltage	

74F825

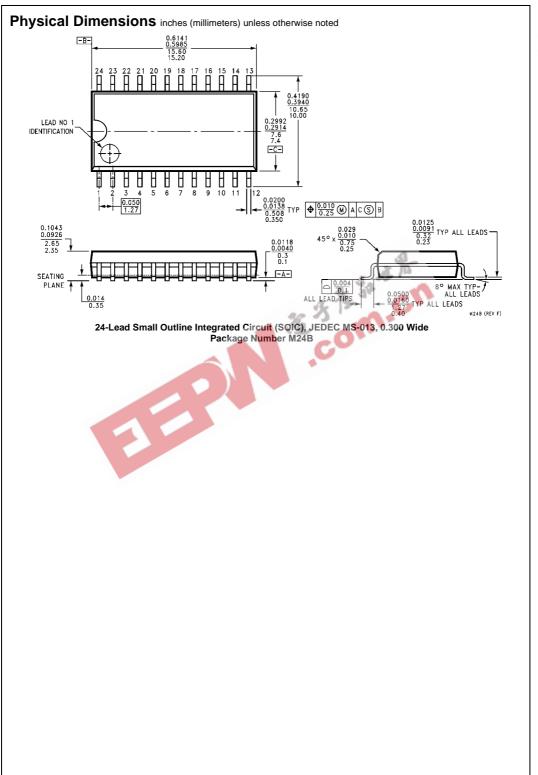
0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

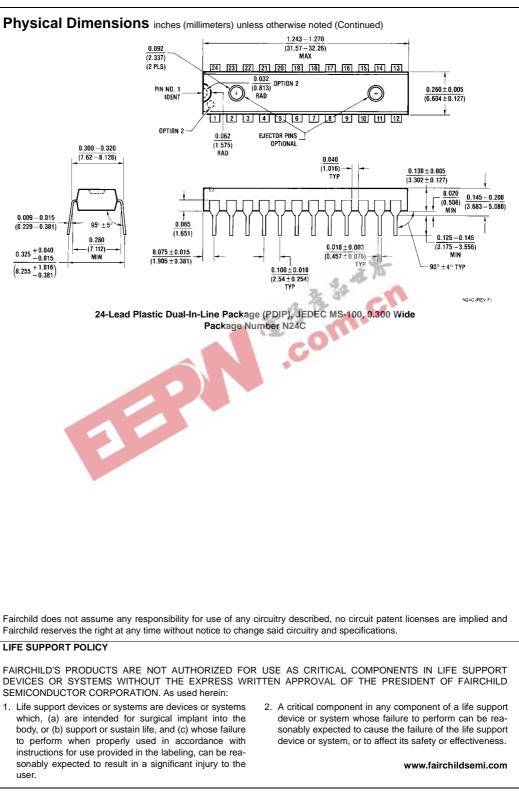
DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Мах	Units	Vcc	Conditions
V _{IH}	Input HIGH Voltage		2.0			V	16. M	Recognized as a HIGH Signal
VIL	Input LOW Voltage				0.8	- V -		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5		38. 3			I _{OH} = -1 mA
	Voltage	10% V _{CC}	2.4		12.	V	Min	$I_{OH} = -3 \text{ mA}$
		5% V _{CC}	2.7		-	O.		$I_{OH} = -1 \text{ mA}$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
	Voltage	10 % VCC			0.5	v	IVIIII	10L - 24 IIIA
I _{IH}	Input HIGH				5.0		Max	V _{IN} = 2.7V
	Current				5.0	μA	IVIAX	$v_{\rm IN} = 2.7 v$
I _{BVI}	Input HIGH Current				7.0		Max	V = 7.0V
	Breakdown Test				7.0	μA	IVIAX	V _{IN} = 7.0V
ICEX	Output HIGH				50	μA	Max	$V_{OUT} = V_{CC}$
	Leakage Current				50	μА	IVIAX	VOUT = VCC
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$
	Test		4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μA	0.0	V _{IOD} = 150 mV
	Circuit Current				3.75	μА	0.0	All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OZH}	Output Leakage Current				50	μA	Max	$V_{OUT} = 2.7V$
I _{OZL}	Output Leakage Current				-50	μA	Max	$V_{OUT} = 0.5V$
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
I _{ZZ}	Buss Drainage Test				500	μA	0.0V	$V_{OUT} = 5.25V$
I _{CCZ}	Power Supply Current			75	90	mA	Max	V _O = HIGH Z


S
2
œ
ЩĻ
4

AC Electrical Characteristics

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$\label{eq:TA} \begin{split} T_A = -55^\circ C \ to \ +125^\circ C \\ V_{CC} = +5.0V \\ C_L = 50 \ pF \end{split}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	100	160		60		70		MHz
t _{PLH}	Propagation Delay	2.0	6.5	9.5	2.0	10.5	2.0	10.5	ne
t _{PHL}	CP to O _n	2.0	6.6	9.5	2.0	10.5	2.0	10.5	ns
t _{PHL}	Propagation Delay CLR to O _n	4.0	7.4	12.0	4.0	13.0	4.0	13.0	ns
t _{PZH}	Output Enable Time	2.0	6.5	10.5	2.0	13.0	2.0	11.5	
t _{PZL}	OE to O _n	2.0	6.6	10.5	2.0	13.0	2.0	11.5	ns
t _{PHZ}	Output Disable TIme	1.5	3.5	7.0	1.0	7.5	1.5	7.5	115
t _{PLZ}	OE to O _n	1.5	3.3	7.0	1.0	7.5	1.5	7.5	


AC Operating Requirements

Symbol Parameter			= +25°C ₂ = +5.0V	$T_A = -55^{\circ}C \text{ to } +125^{\circ}$ $V_{CC} = +5.0V$		Units
		Min	Max	Min Max	Min Max	
t _S (H)	Setup Time, HIGH or LOW	2.5	A	4.0	3.0	
t _S (L)	D _n to CP	2.5	10 M	4.0	3.0	ns
t _H (H)	Hold Time, HIGH or LOW	2.5	13.1	2.5	2.5	115
t _H (L)	D _n to CP	2.5		2.5	2.5	
t _S (H)	Setup Time, HIGH or LOW	4.5		5.0	5.0	
t _S (L)	EN to CP	2.5	1.1	3.0	3.0	ns
t _H (H)	Hold Time, HIGH or LOW	2.0		3.0	1.0	115
t _H (L)	EN to CP	0		2.0	0	
t _W (H)	CP Pulse Width	5.0		6.0	6.0	ns
t _W (L)	HIGH or LOW	5.0		6.0	6.0	115
t _W (L)	CLR Pulse Width, LOW	5.0		5.0	5.0	ns
t _{REC}	CLR Recovery Time	5.0		5.0	5.0	ns

74F825

www.fairchildsemi.com

www.fairchildsemi.com