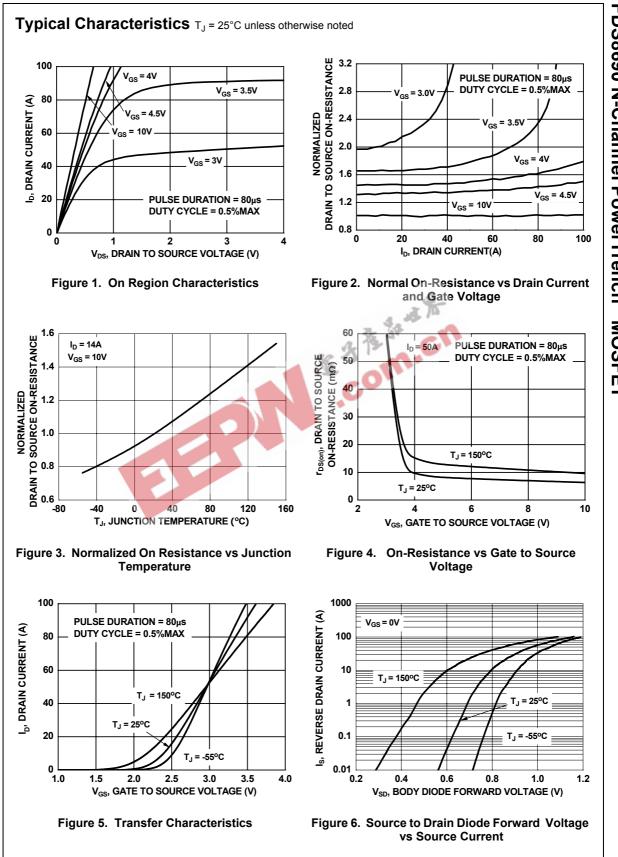
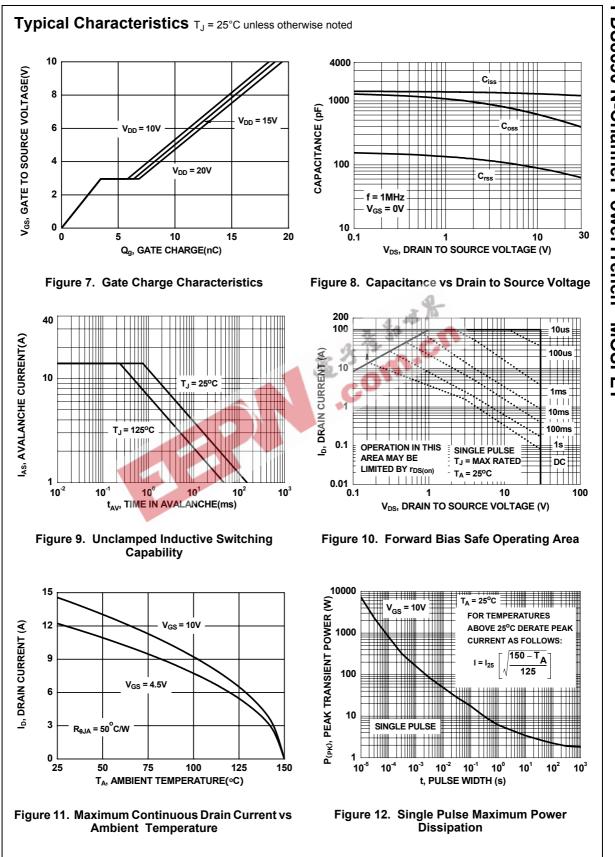


Absolute Maximum Ratings T_A = 25°C unless otherwise Noted

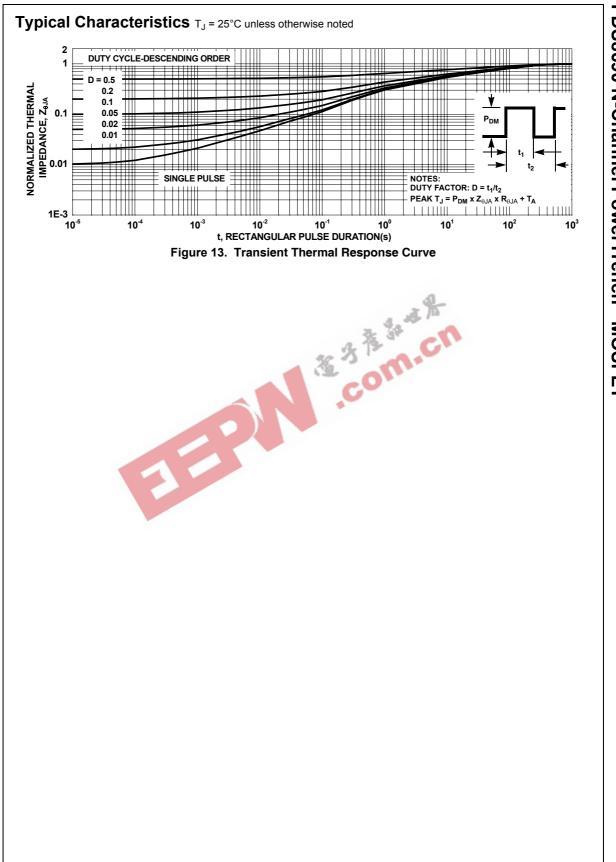
Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage	30	V	
V _{GS}	Gate to Source Voltage		±20	V
I _D	Drain Current -Continuous	(Note 1a)	14	_
	-Pulsed		100	— A
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	210	mJ
P _D	Power Dissipation for Single Operation	(Note 1a)	2.5	
		(Note 1b)	1.2	W
		(Note 1c)	1.0	
T _J , T _{STG}	Operating and Storage Temperature		-55 to +150	°C

Thermal Characteristics


R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	50	°C/W
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	25	°C/W


Package Marking and Ordering Information

	Marking	Device	Reel Size	Tape Width	Quantity
FD	S8690	FDS8690	13"	12mm	2500 units


	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	30			V
ΔB _{VDSS}	Breakdown Voltage Temperature	$I_D = 250 \mu A$, referenced to		04.0		
ΔT_J	Coefficient	25°C		34.3		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V, V_{GS} = 0V$			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
On Chara	cteristics (Note 2)					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1	1.6	3	V
ΔV _{GS(th)}	Gate to Source Threshold Voltage	I _D =250µA, referenced to		4.5		
ΔT_J	Temperature Coefficient	25°C		- 4.5		mV/°C
		V _{GS} = 10V, I _D = 14A		6.3	7.6	
r _{DS(ON)}	Drain to Source On Resistance	V _{GS} = 4.5V, I _D = 11.5A		8.6	11.4	mΩ
DS(ON)		$V_{GS} = 10V, I_D = 14A,$ $T_J = 125^{\circ}C$		9.0	10.9	
Dynamic	Characteristics		St.			
C _{iss}	Input Capacitance	W ARVIN BOUR		1260	1680	pF
C _{oss}	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz	C	535	715	pF
C _{rss}	Reverse Transfer Capacitance			80	120	pF
R _G	Gate Resistance	f = 1MHz		1.1		Ω
Switching	Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	V _{DS} = 15V, I _D = 1A,		8.0	16	ns
t _r	Rise Time	$V_{GS} = 10V, R_{GS} = 6\Omega$		1.8	10	ns
t _{d(off)}	Turn-Off Delay Time	-		26 19	42 35	ns
t _f	Fair Time	V _{DS} = 15V, V _{GS} = 10V		19	35	ns
Qg	Total Gate Charge	$I_D = 14A$		18.8	27	nC
0	Total Gate Charge	V _{DS} = 15V, V _{GS} = 5V		10	14	nC
Qg	Gate to Source Gate Charge	I _D = 14A		3.5		nC
Q _g Q _{gs}	Osta ta Dusia Ohanna			2.9		nC
U U	Gate to Drain Charge					
Q _{gs} Q _{gd}	Irce Diode Characteristics					
Q _{gs} Q _{gd}	Ŭ	V _{GS} = 0V, I _S = 2.1A		0.7	1.2	V
Q _{gs} Q _{gd} Drain-Sou	Irce Diode Characteristics	$V_{GS} = 0V, I_S = 2.1A$ $I_F = 14A, di/dt = 100A/\mu s$ $I_F = 14A, di/dt = 100A/\mu s$		0.7	1.2 45	V ns

2. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied. 3. Starting $T_J = 25^{\circ}C$, L = 3mH, $I_{AS} = 11.8A$, $V_{DD} = 24V$, $V_{GS} = 10V$.

FDS8690 N-Channel PowerTrench[®] MOSFET

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TCM™
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics [™]	TinyLogic [®]
CROSSVOLT™	GTO™	MICROWIRE™	Quiet Series™	TINYOPTO™
DOME™	HiSeC™	MSX™	RapidConfigure™	TruTranslation™
EcoSPARK™	I²C™	MSXPro™	RapidConnect™	UHC™
E ² CMOS™	<i>i-Lo</i> ™	OCX™	µSerDes™	UltraFET [®]
EnSigna™	ImpliedDisconnect [™]	OCXPro™	ScalarPump™	UniFET™
FACT™	IntelliMAX™	OPTOLOGIC [®]	SILENT SWITCHER [®]	VCX™
FACT Quiet Serie		OPTOPLANAR™	SMART START™	Wire™
Aaroog the hear	d. Around the world.™	PACMAN™	SPM™	
The Power Fran		POP™	Stealth™	
		Power247™	SuperFET™	
Programmable A		PowerEdge™	SuperSOT [™] -3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

T

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.