

© 1995 National Semiconductor Corporation TL/H/5521

RRD-B30M75/Printed in U. S. A.

ADC0852/ADC0854 Multiplexed Comparator with 8-Bit Reference Divider

Absolute Maxi	mum Rating	S (Notes 1 and 2)
---------------	------------	--------------------------

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Current into V⁺ (Note 3) 15 mA

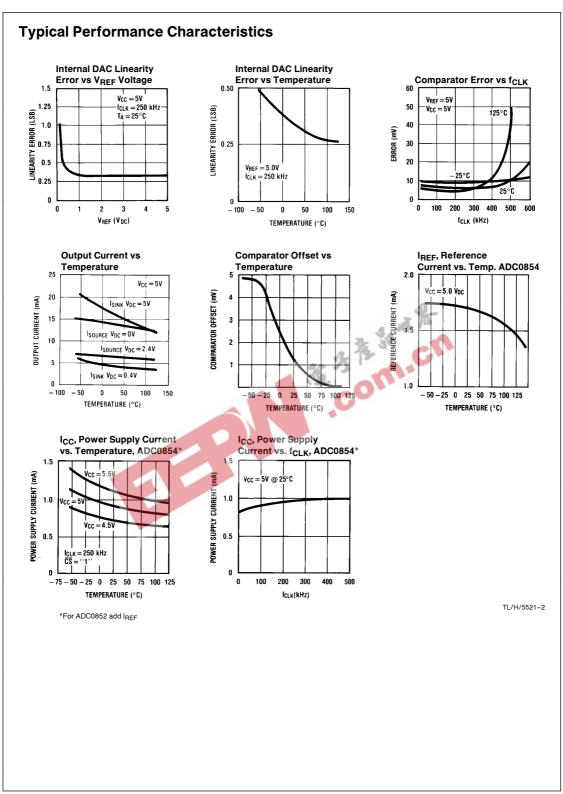
Lead Temp. (Soldering, 10 seconds) Dual-In-Line Package (plastic) ESD Susceptibility (Note 14)

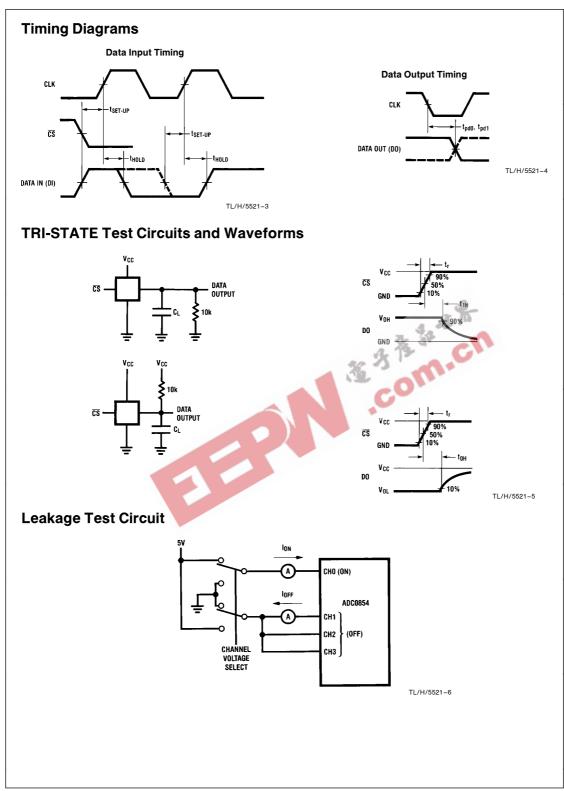
260°C 2000V

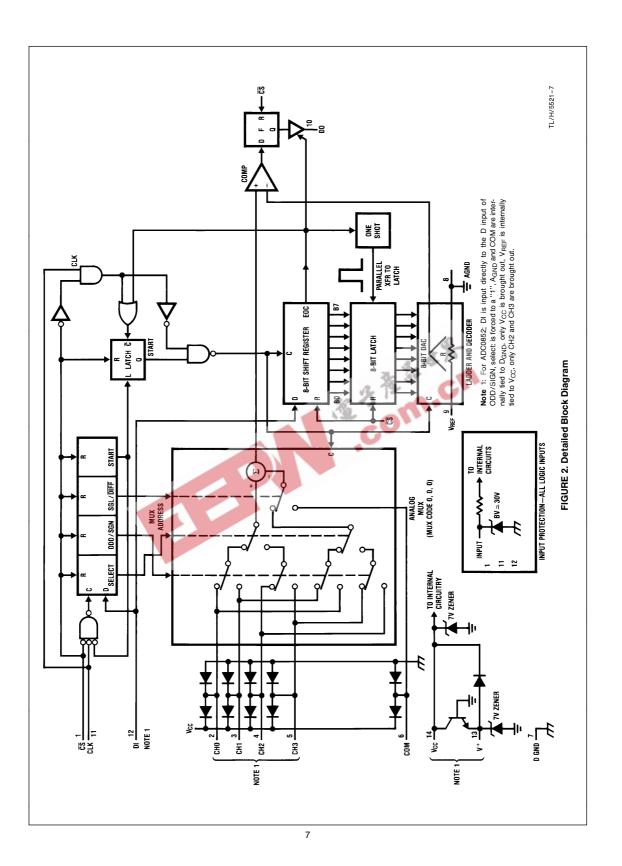
Operating Conditions

Supply Voltage, V_{CC} Temperature Range ADC0854CCN, ADC0852CCN $\begin{array}{l} 4.5V_{DC} \text{ to } 6.3V_{DC} \\ T_{MIN} \leq T_A \leq T_{MAX} \\ 0^{\circ}C \leq T_A \leq 70^{\circ}C \end{array}$

	1011/1
Supply Voltage, V _{CC} (Note 3)	6.5V
Voltage	
Logic and Analog Inputs	$-0.3V$ to $V_{\mbox{CC}}$ $+0.3V$
Input Current per Pin	$\pm 5 \text{ mA}$
Input Current per Package	\pm 20 mA
Storage Temperature	-65°C to +150°C
Package Dissipation	
at $T_A = 25^{\circ}C$ (Board Mount)	0.8W


Electrical Characteristics The following specifications apply for $V_{CC} = V^+ = 5V$ (no V⁺ on ADC0852), $V_{REF} \le V_{CC} + 0.1V$, $f_{CLK} = 250$ kHz unless otherwise specified. **Boldface limits apply from T_MIN to T_MAX;** all other limits T_A = T_J = 25°C.


		ADC0852CCN ADC0854CCN			
Parameter	Conditions	Typ (Note 4)	Tested Limit (Note 5)	Design Limit (Note 6)	Units
CONVERTER AND MULTIPL	EXER CHARACTERISTICS	S		A A P	
Total Unadjusted Error (Note 7) ADC0852/4/CCN	V _{REF} Forced to 5.000 V _{DC}		15 ± 15	34 ±1	LSB
Comparator Offset ADC0852/4/CCN		2.5	132 00	20	mV
Minimum Total Ladder Resistance	ADC0854 (Note 15)	3.5	1.3	1.3	kΩ
Maximum Total Ladder Resistance	ADC0854 (Note 15)	3.5	5.4	5.9	kΩ
Minimum Common-Mode Input (Note 8)	All MUX Inputs and COM Input		GND-0.05	GND -0.05	v
Maximum Common-Mode Input (Note 8)	All MUX Inputs and COM Input		V _{CC} + 0.05	V _{CC} + 0.05	v
DC Common-Mode Error		± 1/16	± 1/4	± 1⁄4	LSB
Power Supply Sensitivity	$V_{CC} = 5V \pm 5\%$	± 1/16	± 1/4	± 1⁄4	LSB
V _Z , Internal diode MIN breakdown MAX at V ⁺ (Note 3)	15 mA into V +		6.3 8.5		> >
I _{OFF} , Off Channel Leakage Current (Note 9)	On Channel = $5V$, Off Channel = $0V$		-200	- 1	μA nA
	On Channel $= 0V$, Off Channel $= 5V$		+ 200	+ 1	μA nA


		ADC0852CCN ADC0854CCN			
Parameter	Conditions	Typ (Note 4)	Tested Limit (Note 5)	Design Limit (Note 6)	Units
CONVERTER AND MULTIPLE	XER CHARACTERISTICS (Cor	ntinued)	·		
I _{ON} , On Channel Leakage Current (Note 9)	On Channel = 5V, Off Channel = $0V$		+ 200	+ 1	μA nA
	On Channel $= 0V$, Off Channel $= 5V$		-200	- 1	μA nA
DIGITAL AND DC CHARACTE	RISTICS				
V _{IN(1)} , Logical ''1'' Input Voltage	$V_{CC} = 5.25V$		2.0	2.0	V
V _{IN(0)} , Logical ''0'' Input Voltage	$V_{CC} = 4.75V$		0.8	0.8	V
I _{IN(1)} , Logical ''1'' Input Current	$V_{IN} = V_{CC}$	0.005	1	1	μΑ
I _{IN(0)} , Logical ''0'' Input Current	$V_{IN} = 0V$	-0.005	34 34 M	0-1	μΑ
V _{OUT(1)} , Logical "1" Output Voltage	$V_{CC} = 4.75V$ $I_{OUT} = -360 \ \mu A$ $I_{OUT} = -10 \ \mu A$	逐步	2. 4 4.5	2.4 4.5	v v
V _{OUT(0)} , Logical ''0'' Output Voltage	$I_{OUT} = 1.6 \text{ mA},$ $V_{CC} = 4.75 \text{V}$		0.4	0.4	v
I _{OUT} , TRI-STATE® Output Current (DO)	$\overline{CS} = \text{Logical "1"} \\ V_{OUT} = 0.4V \\ V_{OUT} = 5V$	-0.1 0.1	-3 3	-3 3	μΑ μΑ
ISOURCE	V _{OUT} Short to GND	-14	-7.5	-6.5	mA
ISINK	V _{OUT} Short to V _{CC}	16	9.0	8.0	mA
I _{CC} Supply Current ADC0852	Includes DAC Ladder Current	2.7	6.5	6.5	mA
I _{CC} Supply Current ADC0854 (Note 3)	Does not Include DAC Ladder Current	0.9	2.5	2.5	mA

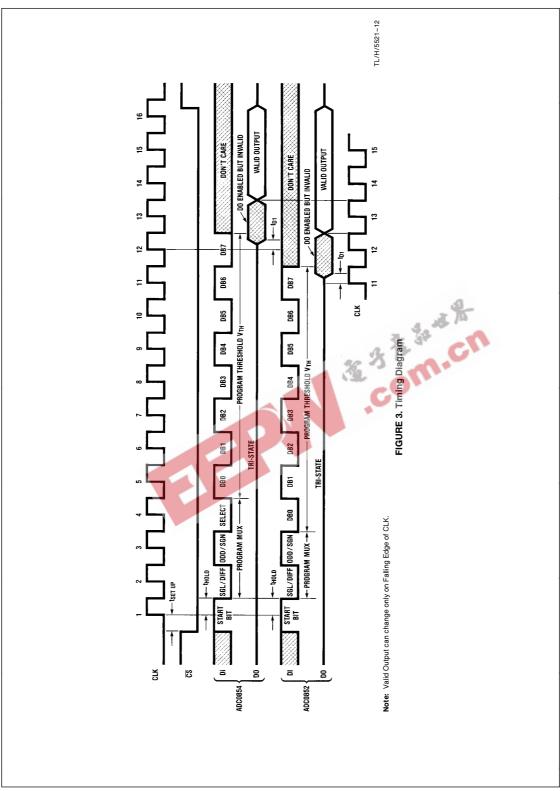
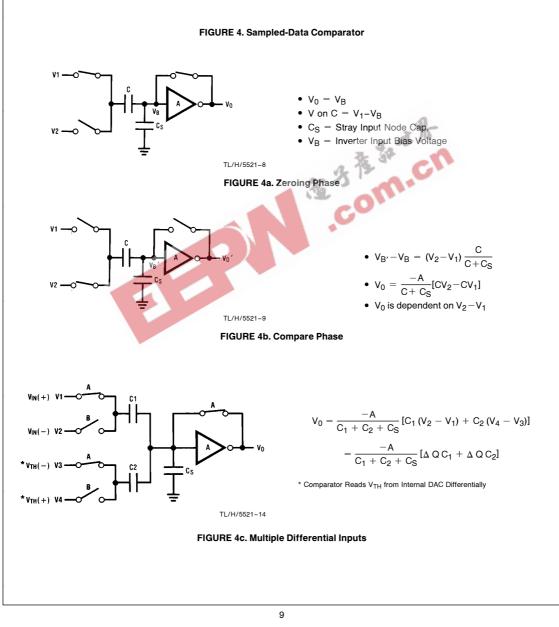

Γ

Image: Constraint of the second sec	Clock Frequency Note 12) Rising Edge of Clock o "DO" Enabled Comparator Response Fime (Note 13) Clock Duty Cycle Note 10) CS Falling Edge or Data Input Valid to CLK Rising Edge Data Input Valid after CLK Rising Edge CLK Falling Edge to Dutput Data Valid Note 11)	MIN MAX MIN MAX MAX MIN	C _L = 100 pF Not Including Addressing Time	650	10 40 60	400 1000 2 + 1 μs	kHz kHz ns 1/f _{Cl} %
tr CC tr CC tr CC tr CC tsET-UP tSET-UP thOLD tpd1, tpd0 CC tpd1, tpd0 CC t1H, t0H F CC CC CC CC CC CC CC CC CC	o "DO" Enabled Comparator Response Time (Note 13) Clock Duty Cycle Note 10) CS Falling Edge or Data Input Valid to CLK Rising Edge Data Input Valid after CLK Rising Edge CLK Falling Edge to Dutput Data Valid	MAX	Not Including	650		2 + 1 μs	1/f _{Cl} %
т tseт-UP thoLD tpd1, tpd0 t1H, toH t1H, toH	Time (Note 13) Clock Duty Cycle Note 10) CS Falling Edge or Data Input Valid to CLK Rising Edge Data Input Valid after CLK Rising Edge CLK Falling Edge to Dutput Data Valid	MAX	e e e e e e e e e e e e e e e e e e e				%
tset-UP C thold C t	Note 10) CS Falling Edge or Data Input Valid to CLK Rising Edge Data Input Valid after CLK Rising Edge CLK Falling Edge to Dutput Data Valid	MAX					
столого состания thOLD С tpd1, tpd0 С с t1H, t0H Г с	Data Input Valid to CLK Rising Edge Data Input Valid after CLK Rising Edge CLK Falling Edge to Dutput Data Valid						
tpd1, tpd0 С (I t1н, t0н F	CLK Rising Edge CLK Falling Edge to Dutput Data Valid	MIN				250	ns
с (I t _{1H} , t _{0H} F	Dutput Data Valid					90	ns
		MAX	C _L = 100 pF	650		1000	ns
C _{IN} C	Rising Edge of CS to Data Output Hi-Z	MAX	$\begin{array}{l} C_L = 10 \ \text{pF}, \ \text{R}_L = 10 \text{k} \\ C_L = 100 \ \text{pF}, \ \text{R}_L = 2 \text{k} \\ \text{(see TRI-STATE Test Circuits)} \end{array}$	125	500	250 5 0 0	ns ns
Ir	Capacitance of Logic			5	m.		pF
	Capacitance of Logic Dutputs			5			pF
Note 3: Internal : to V_{CC} via a com device is powered Max of 6.5V. It is Note 4: Typicals Note 5: Tested a Note 6: Guarant Note 7: Total un Note 8: For V _{IN} (voltages one diversion (5V) can cause th bias of either diod achieve an absolutant and loading. Note 9: Leakage Note 10: A 40% these limits then Note 11: With \overline{CS} clock cycles prior Note 12: Error sp Note 13: See tes Note 14: Human	ventional diode. Since the zet d from V+. Functionality is the recommended that a resistor are at 25°C and represent in and guaranteed to National A teed, but not 100% production adjusted error includes comp $(-) \ge V_{IN}(+)$ the output will be de drop below ground or one of bis input diode to conduct— est and the vertice of the vertice of the dot of below ground or one of the VD _C to 5 VD _C input volt a current is measured with the to 60% clock duty cycle ran 1.6 μ S \le CLK Low \le 60 μ S S low and programming comp r (see <i>Figure 5</i>). uppecs are not guaranteed at 4 xt, section 1.2. body model, 100 pF dischar	e connected aner voltaginerofore gu nerofore gu noost likely p VOQL (Aver in tested. T aarator offs e 0. Two on diode drop e specially at s the analog age range v e clock not ge ensures S and 1.6 μ olete, D0 is 400 kHz (se ged throug)	a from V+ to GND and V _{CC} to GND. The zee e equals the A/D's breakdown voltage, the aranteed for V+ operation even though the to limit the max current into V+. aarametric norm. rage Outgoing Quality Level). These limits are not used to calculate outgoi et, DAC linearity, and multiplexer error. It is -chip diodes are tied to each analog input (si greater than the V _{CC} supply. Be careful, duri elevated temperatures, and cause errors for g V _{IN} or V _{REF} does not exceed the supply volta t switching. proper operation at all clock frequencies. In $LS \leq CLK$ HIGH $\leq \infty$. updated on each falling CLK edge. However be graph: Comparator Error vs. f _{CLK}).	diode ensures t resultant voltage ng quality levels. expressed in LS ae Block Diagram ga testing at low 1 analog inputs ne Itage by more tha ge of 4.950 V _{DC} n the case that at c, each new output	hat V _{CC} will be a at V _{CC} may ex Bs of the thresh b) which will forw / _{CC} levels (4.5V) ar full-scale. The an 50 mV, the ou over temperatur n available clock it is based on the	below breakdown ceed the specifier and DAC's input of ard conduct for an spec allows 50 n tiput code will be e e variations, initial a has a duty cycle e comparison com	when the discount of the disco


Functional Description

1. 1 The Sampled-data Comparator

The ADC0852 and ADC0854 utilize a sampled-data comparator structure to compare the analog difference between a selected "+" and "-" input to an 8-bit programmable threshold.

This comparator consists of a CMOS inverter with a capacitively coupled input (*Figure 4*). Analog switches connect the two comparator inputs to the input capacitor and also connect the inverter's input and output. This device in effect now has one differential input pair. A comparison requires two cycles, one for zeroing the comparator and another for making the comparison. In the first cycle (*Figure 4a*), one input switch and the inverter's feedback switch are closed. In this interval, the input capacitor (C) is charged to the connected input (V1) less the inverter's bias voltage (V_B, approx. 1.2 volts). In the second cycle (*Figure 4b*) these two switches are opened and the other (V2) input's switch is closed. The input capacitor now subtracts its stored voltage from the second input and the difference is amplified by the inverter's open loop gain. The inverter input (V_B') becomes V_B - (V1 - V2) $\frac{C}{C + C_S}$ and

the output will go high or low depending on the sign of $V_B\text{'}-V_B\text{.}$

Functional Description (Continued)

In actual practice, the devices used in the ADC0852/4 are a simple but important expansion of the basic comparator described above. As shown in *Figure 4c*, multiple differential comparisons can be made. In this circuit, the feedback switch and one input switch on each capacitor (A switches) are closed in the first cycle. Then the other input on each capacitor is connected while all of the first switches are opened. The change in voltage at the inverter's input, as a result of the change in charge on each input capacitor (C1, C2), will now depend on both input signal differences.

1.2 Input Sampling and Response Time

The input phases of the comparator relate to the device clock (CLK) as shown in *Figure 5*. Because the comparator is a sampling device, its response characteristics are somewhat different from those of linear comparators. The V_{IN}(+) input is sampled first (CLK high) followed by V_{IN}(-) (CLK low). The output responds to those inputs, one half cycle later, on CLK's falling edge.

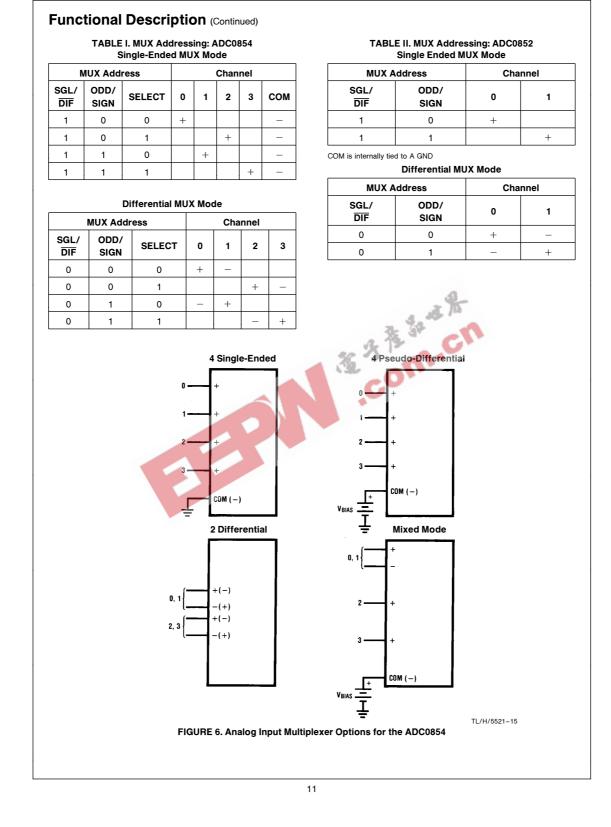
The comparator's response time to an input step is dependent on the step's phase relation to the CLK signal. If an input step occurs too late to influence the most imminent comparator decision, one more CLK cycle will pass before the output is correct. In effect, the response time for the V_{IN}(+) input has a minimum of 1 CLK cycle + 1 μ S and a maximum of 2 CLK cycles + 1 μ S. The V_{IN}(-) input's delay will range from 1/2 CLK cycle + 1 μ S to 1.5 CLK cycles + 1 μ S since it is sampled after V_{IN}(+).

The sampled inputs also affect the device's response to pulsed signals. As shown in the shaded areas in *Figure 5*, pulses that rise and/or fall near the latter part of a CLK half-cycle may be ignored.

1.3 Input Multiplexer

A unique input multiplexing scheme has been utilized to pro

vide multiple analog channels with software-configurable single-ended, differential, or pseudo-differential operation. The analog signal conditioning required in transducer-input and other types of data acquisition systems is significantly simplified with this type of input flexibility. One device package can now handle ground referenced inputs as well as signals with some arbitrary reference voltage.


On the ADC0854, the "common" pin (pin 6) is used as the "-" input for all channels in single-ended mode. Since this input need not be at analog ground, it can be used as the common line for pseudo-differential operation. It may be tied to a reference potential that is common to all inputs and within the input range of the comparator. This feature is especially useful in single-supply applications where the analog circuitry is biased to a potential other than ground.

A particular input configuration is assigned during the MUX addressing sequence which occurs prior to the start of a comparison. The MUX address selects which of the analog channels is to be enabled, what the input mode will be, and the input channel polarity. One limitation is that differential inputs are restricted to adjacent channel pairs. For example, channel 0 and 1 may be selected as a differential pair but they cannot act differentially with any other channel.

The channel and polarity selection is done serially via the DI input. A complete listing of the input configurations and corresponding MUX addresses for the ADC0852 and ADC0854 is shown in tables I and II. *Figure 6* illustrates the analog connections for the various input options.

The analog input voltage for each channel can range from 50 mV below ground to 50 mV above V_{CC} (typically 5V) without degrading accuracy.

Functional Description (Continued)

2.0 THE DIGITAL INTERFACE

An important characteristic of the ADC0852 and ADC0854 is their serial data link with the controlling processor. A serial communication format eliminates the transmission of low level analog signals by locating the comparator close to the signal source. Thus only highly noise immune digital signals need to be transmitted back to the host processor.

To understand the operation of these devices it is best to refer to the timing diagrams (*Figure 3*) and functional block diagram (*Figure 2*) while following a complete comparison sequence.

1. A comparison is initiated by first pulling the \overline{CS} (chip select) line low. This line must be held low for the entire addressing sequence and comparison. The comparator then waits for a start bit, its MUX assignment word, and an 8-bit code to set the internal DAC which supplies the comparator's threshold voltage (V_{TH}).

2. An external clock is applied to the CLK input. This clock can be applied continuously and need not be gated on and off.

3. On each rising edge of the clock, the level present on the DI line is clocked into the MUX address shift register. The start bit is the first logic "1" that appears on this line. All leading zeroes are ignored. After the start bit, the ADC0852 expects the next 2 bits to be the MUX assignment word while the ADC0854, with more MUX configurations, looks for 3 bits.

4. Immediately after the MUX assignment word has been clocked in, the shift register then reads the next eight bits as the input code to the internal DAC. This eight bit word is read LSB first and is used to set the voltage applied to the comparator's threshold input (internal).

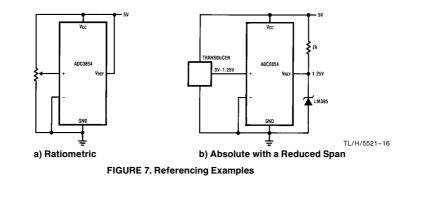
5. After the rising edge of the 11th or 12th clock (ADC0852 or ADC0854 respectively) following the start bit, the comparator and DAC programming is complete. At this point the DI line is disabled and ignores further inputs. Also at this time the data out (DO) line comes out of TRI-STATE and enters a don't care state (undefined output) for 1.5 clock cycles.

6. The result of the comparison between the programmed threshold voltage and the difference between the two selected inputs (V_{IN} (+)-V_{IN} (-)) is output to the DO line on each subsequent high to low clock transition.

7. After programming, continuous comparison on the same selected channel with the same programmed threshold can

be done indefinitely, without reprogramming the device, as long as \overline{CS} remains low. Each new comparator decision will be shifted to the output on the falling edge of the clock. However, the output will, in effect, "lag" the analog input by 0.5 to 1.5 clock cycles because of the time required to make the comparison and latch the output (see *Figure 5*).

8. All internal registers are cleared when the \overline{CS} line is brought high. If another comparison is desired \overline{CS} must make a high to low transition followed by new address and threshold programming.


3.0 REFERENCE CONSIDERATIONS / RATIOMETRIC OPERATION

The voltage applied to the "V_{REF}" input of the DAC defines the voltage span that can be programmed to appear at the threshold input of the comparator. The ADC0854 can be used in either ratiometric applications or in systems with absolute references. The V_{REF} pin must be connected to a source capable of driving the DAC ladder resistance (typ. 2.4 kΩ) with a stable voltage.

In ratiometric systems, the analog input voltage is normally a proportion of the DAC's or A/D's reference voltage. For example, a mechanical position servo using a potentiometer to indicate rotation, could use the same voltage to drive the reference as well as the potentiometer. Changes in the value of V_{REF} would not affect system accuracy since only the relative value of these signals to each other is important. This technique relaxes the stability requirements of the system reference since the analog input and DAC reference move together, thus maintaining the same comparator output for a given input condition.

In the absolute case, the V_{REF} input can be driven with a stable voltage source whose output is insensitive to time and temperature changes. The LM385 and LM336 are good low current devices for this purpose.

The maximum value of V_{REF} is limited to the V_{CC} supply voltage. The minimum value can be quite small (see typical performance curves) allowing the effective resolution of the comparator threshold DAC to also be small (V_{REF} = 0.5V, DAC resolution = 2.0 mV). This in turn lets the designer have finer control over the comparator trip point. In such instances however, more care must be taken with regard to noise pickup, grounding, and system error sources.

Functional Description (Continued)

4.0 ANALOG INPUTS

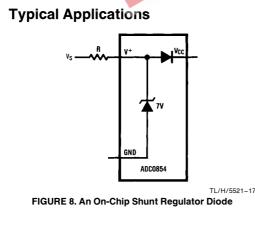
4. 1 Differential Inputs

The serial interface of the ADC0852 and ADC0854 allows them to be located right at the analog signal source and to communicate with a controlling processor via a few fairly noise immune digital lines. This feature in itself greatly reduces the analog front end circuitry often needed to maintain signal integrity. Nevertheless, a few words are in order with regard to the analog inputs should the input be noisy to begin with or possibly riding on a large common mode voltage.

The differential input of the comparator actually reduces the effect of common-mode input noise, i.e. signals common to both selected "+" and "-" inputs such as 60 Hz line noise. The time interval between sampling the "+" input and then the "-" input is $\frac{1}{2}$ of a clock period (see *Figure 5)*.

The change in the common-mode voltage during this short time interval can cause comparator errors. For a sinusoidal common-mode signal this error is:

 V_{ERROR} (MAX) = V_{PEAK} (2 π f_{CM}/2 f_{CLK})


where f_{CM} is the frequency of the common-mode signal, V_{peak} is its peak voltage value, and f_{CLK} is the DAC clock frequency.

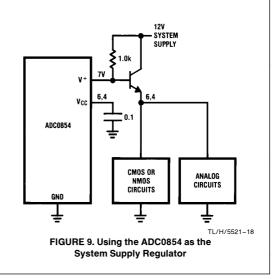
For example, 1 V_{PP} 60 Hz noise superimposed on both sides of a differential input signal would cause an error (referred to the input) of 0.75 mV. This amounts to less than 1_{25}^{\prime} of an LSB referred to the threshold DAC, (assuming V_{REF} = 5V and f_{CLK} = 250 kHz).

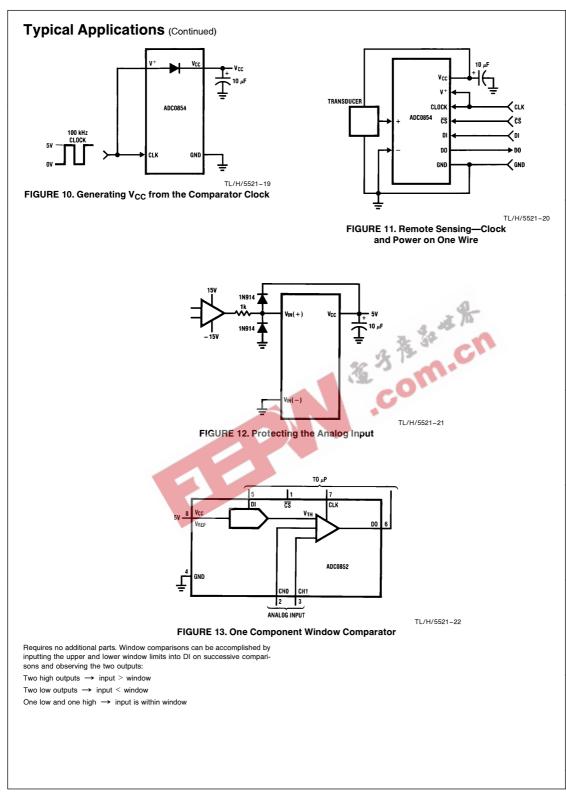
4. 2 Input Currents and Filtering

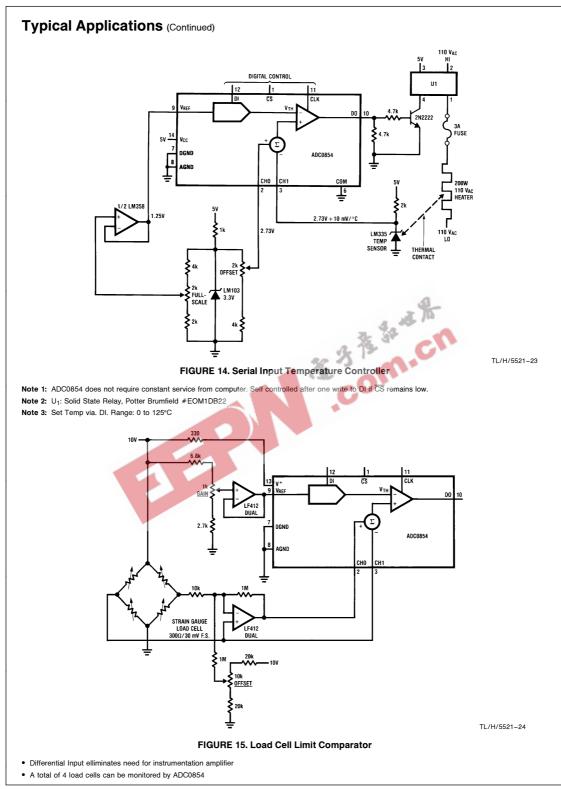
Due to the sampling nature of the analog inputs, short spikes of current enter the "+" input and leave the "-" at the clock edges during a comparison. These currents decay rapidly and do not cause errors as the comparator is strobed at the end of the clock period (see *Figure 5*).

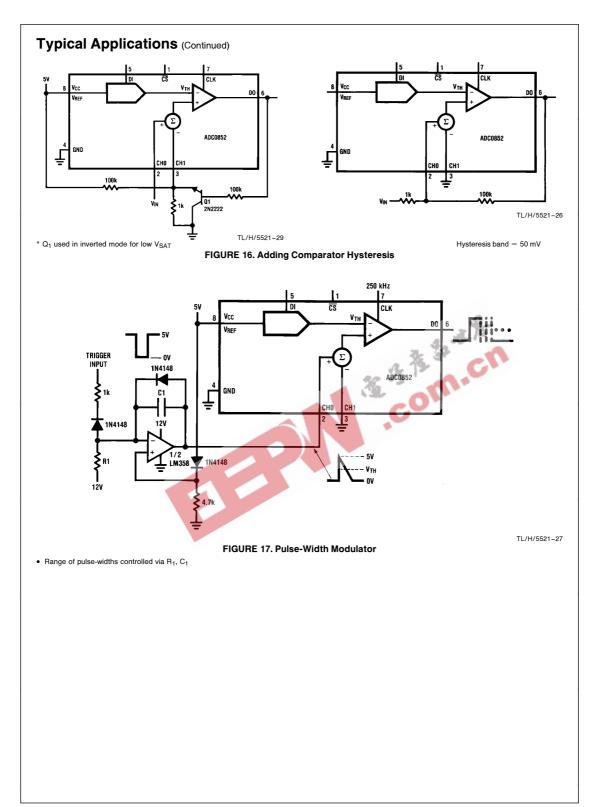
The source resistance of the analog input is important with regard to the DC leakage currents of the input multiplexer. The worst-case leakage currents of $\pm 1~\mu A$ over temperature will create a 1 mV input error with a 1 k Ω source

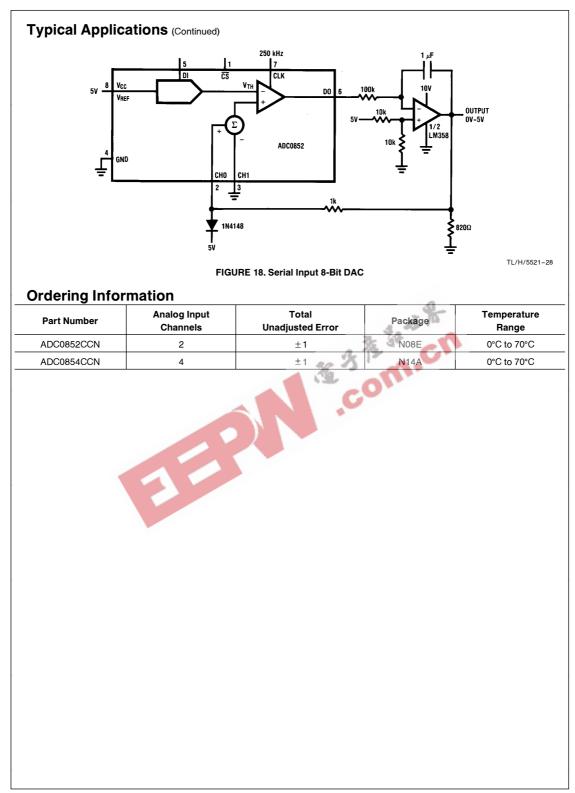
resistance. An op-amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance source be required.

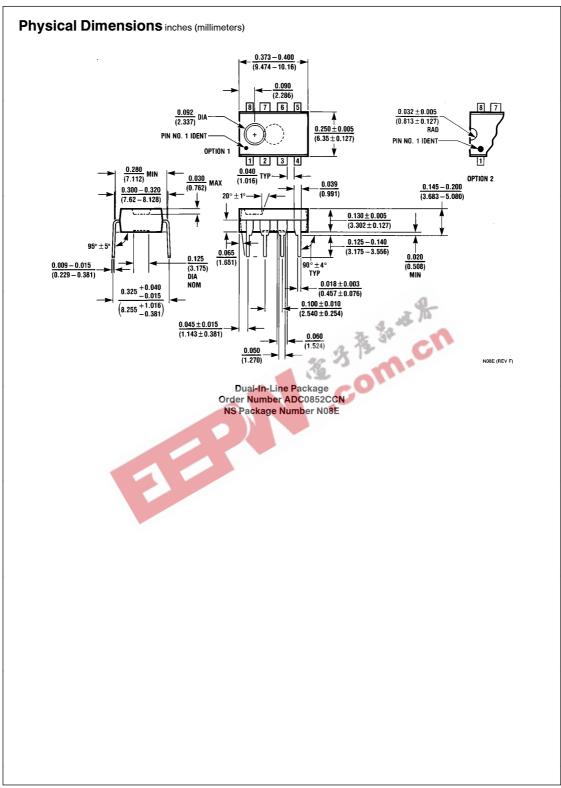

4. 3 Arbitrary Analog Input/Reference Range

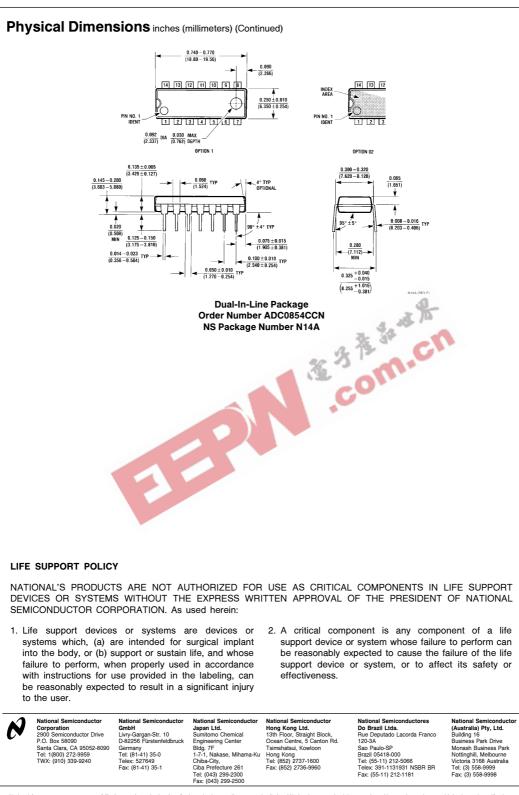

The total span of the DAC output and hence the comparator's threshold voltage is determined by the DAC reference. For example, if V_{REF} is set to 1 volt then the comparator's threshold can be programmed over a 0 to 1 volt range with 8 bits of resolution. From the analog input's point of view, this span can also be shifted by applying an offset potential to one of the comparator's selected analog input lines (usually "-"). This gives the designer greater control of the ADC0852/4's input range and resolution and can help simplify or eliminate expensive signal conditioning electronics. An example of this capability is shown in the "Load Cell Limit Comparator" of *Figure 15*. In this circuit, the ADC0852 allows the load-cell signal conditioning to be done with only one dual op-amp and without complex, multiple resistor matching.


5.0 POWER SUPPLY


A unique feature of the ADC0854 is the inclusion of a 7 volt zener diode connected from the "V+" terminal to ground (*Figures 2* and *B*) "V+" also connects to "V_{CC}" via a silicon diode. The zener is intended for use as a shunt voltage regulator to eliminate the need for additional regulating components. This is especially useful if the ADC0854 is to be remotely located from the system power source.


An important use of the interconnecting diode between V+ and V_{CC} is shown in *Figures 10* and *11*. Here this diode is used as a rectifier to allow the V_{CC} supply for the converter to be derived from the comparator clock. The low device current requirements and the relatively high clock frequencies used (10 kHz–400 kHz) allows use of the small value filter capacitor shown. The shunt zener regulator can also be used in this mode however this requires a clock voltage swing in excess of 7 volts. Current limiting for the zener is also needed, either built into the clock generator or through a resistor connected from the clock to V+.





National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.