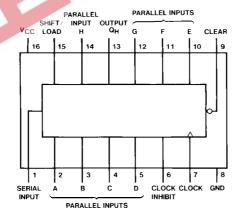


August 1986 Revised March 2000

DM74LS166 8-Bit Parallel-In/Serial-Out Shift Register

General Description

These parallel-in or serial-in, serial-out shift registers feature gated clock inputs and an overriding clear input. All inputs are buffered to lower the drive requirements to one normalized load, and input clamping diodes minimize switching transients to simplify system design. The load mode is established by the shift/load input. When HIGH, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When LOW, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited.


Clocking is accomplished on the LOW-to-HIGH level edge of the clock pulse through a two-input NOR gate, permitting one input to be used as a clock-enable or clock-inhibit function. Holding either of the clock inputs HIGH inhibits clocking; holding either LOW enables the other clock input. This allows the system clock to be free running, and the register can be stopped on command with the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is HIGH. A buffered, direct clear input overrides all other inputs, including the clock, and sets all flip-flops to zero.

Ordering Code:

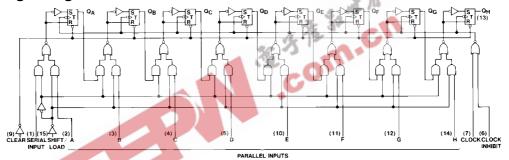
Order Number	Package Number	Package Description		
DM74LS166M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow		
DM74LS166WM	M16B	16-Lead Small Outline Intergrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide		
DM74LS166N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide		

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

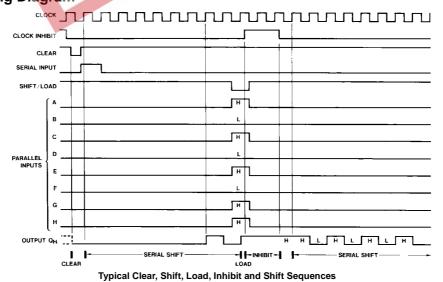
Connection Diagram

Function Table

Inputs						Internal		Output
Clear	Shift/	Clock	Clock	Serial	Parallel	Outputs		Q_H
	Load	Inhibit			АН	Q _A	Q_B	
L	Х	X	X	Х	Х	L	L	L
Н	Х	L	L	Х	Х	Q_{A0}	Q_{B0}	Q_{H0}
Н	L	L	1	Х	ah	а	b	h
Н	Н	L	1	Н	Х	Н	Q_{An}	Q_{Gn}
Н	Н	L	1	L	Х	L	Q_{An}	Q_Gn
Н	Х	Н	1	Х	Х	Q_{A0}	Q_{B0}	Q_{H0}


- H = HIGH Level (steady state)
- T = Inon Level (steady state)

 X = Don't Care (any input, including transitions)


 ↑ = Transition from LOW-to-HIGH level

- a...h = The level of steady-state input at inputs A through H, respectively Q_{A0} , Q_{B0} , Q_{H0} = The level of Q_{A} , Q_{B} , Q_{H} , respectively, before the indicated steady-state input conditions were established Q_{An} , Q_{Gn} : = The level of Q_{A} , Q_{G} , respectively, before the most recent ↑ transition of the clock

Logic Diagram

Timing Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range $0^{\circ}\text{C to } +70^{\circ}\text{C}$ Storage Temperature Range $-65^{\circ}\text{C to } +150^{\circ}\text{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{OH}	HIGH Level Output Current				-0.4	mA
I _{OL}	LOW Level Output Current				8	mA
f _{CLK}	Clock Frequency (Note 2)		0		25	MHz
	Clock Frequency (Note 3)		0		20	MHz
t _W	Pulse Width (Note 4)	Clock	20	4	/D	ns
		Clear	20	7. 7.0	-0	115
t _{SU}	Setup Time (Note 4)	Mode	30	78		ns
	Data		20	-0.0		115
t _H	Hold Time (Note 4)		0	211		ns
T _A	Free Air Operating Temperature		0	0	70	°C

Note 2: $C_L = 15$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C and $V_{CC} = 5V$.

Note 3: C_L = 50 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V.

Note 4: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

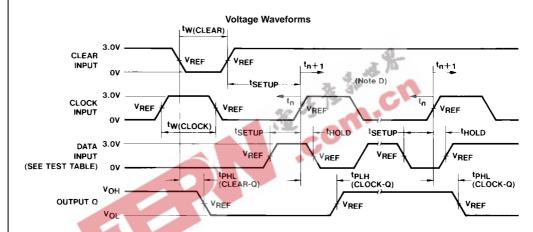
Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 5)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I = -18 mA			-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$	2.7	3.4		V
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IL} = Max, V_{IH} = Min$		0.35	0.5	V
		I _{OL} = 4 mA, V _{CC} = Min		0.25	0.4	
I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
Ios	Short Circuit Output Current	V _{CC} = Max (Note 6)	-20		-100	mA
Icc	Supply Current	V _{CC} = Max (Note 7)		22	38	mA

Note 5: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.


Note 7: With all outputs OPEN, 4.5V applied to the serial input, all other inputs except the CLOCK grounded, I_{CC} is measured after a momentary ground, then 4.5V is applied to the CLOCK.

Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

	Parameter	From (Input)	$R_L = 2 k\Omega$				
Symbol		To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		25		20		MHz
t _{PLH}	Propagation Delay Time	Clock to Output	8	35		38	ns
LOW	LOW-to-HIGH Level Output	Clock to Output					
t _{PHL}	Propagation Delay Time	Clock to Output	8	35		41	no
	HIGH-to-LOW Level Output	Clock to Output	0	33		41	ns
t _{PHL}	Propagation Delay Time	Clear to Output	6	30		36	no
	HIGH-to-LOW Level Output	Clear to Output	0	30		30	ns

Parameter Measurement Information

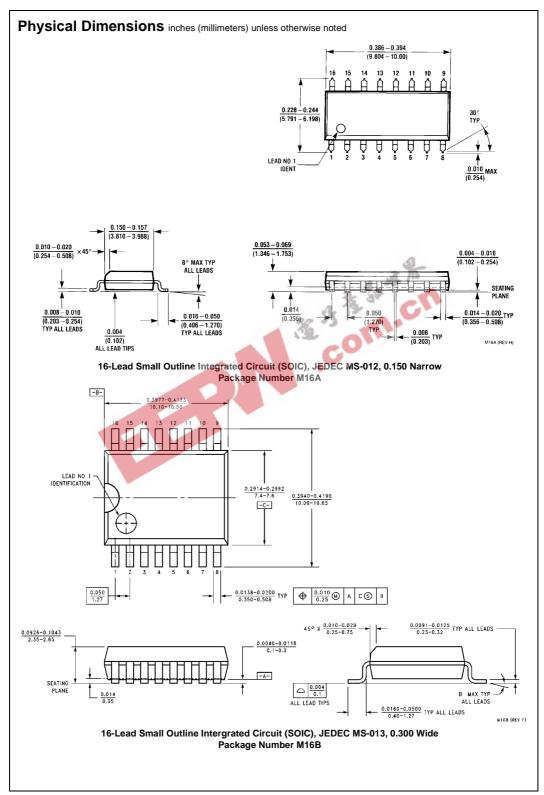
Test Table for Synchronous Inputs

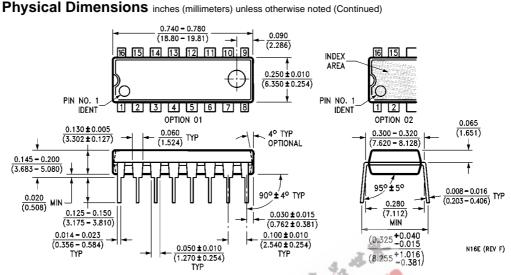
Data Input for Test	Shift/Load	Output Tested (See Note C)		
Н	0V	Q _H at T _{N+1}		
Serial Input	4.5V	Q _H at T _{N+8}		

Note A: The clock pulse has the following characteristics: $t_{W(clock)} \ge 20$ ns and PRR = 1 MHz. The clear pulse has the following characteristics:

 $t_{\mbox{W(clear)}} \geq 20$ ns and $t_{\mbox{HOLD}} = 0$ ns. When testing $f_{\mbox{MAX}},$ vary the clock PRR.

Note B: A clear pulse is applied prior to each test.


Note C: Propagation delay times $(t_{PLH}$ and $t_{PHL})$ are measured at t_{n+1} . Proper shifting of data is verified at t_{n+8} with a functional test.


Note D: $t_n = bit time before clocking transition$

 t_{n+1} = bit time after one clocking transition

 $t_{n+8} = \text{bit time after eight clocking transitions}$

Note E: $V_{REF} = 1.3V$.

16-Lead Plastic Dual-in-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com