June 1997 Revised March 2005 # **FST3245** 8-Bit Bus Switch ## **General Description** The Fairchild Switch FST3245 provides 8-bits of highspeed CMOS TTL-compatible bus switching in a standard '245 pin-out. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise. The device is organized as an 8-bit switch. When $\overline{\text{OE}}$ is LOW, the switch is ON and Port A is connected to Port B. When OE is HIGH, the switch is OPEN and a high-impedance state exists between the two ports. ### **Features** - \blacksquare 4 Ω switch connection between two ports. - Minimal propagation delay through the switch. - Low I_{CC}. - Zero bounce in flow-through mode. - Control inputs compatible with TTL level. ## **Ordering Code:** | | | 2 79 | | | | | | | | |----------------|---------|--|--|--|--|--|--|--|--| | Order Number | Package | Package Description | | | | | | | | | | Number | Fackage Description | | | | | | | | | FST3245WM | M20B | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide | | | | | | | | | FST3245QSC | MQA20 | 20-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide | | | | | | | | | FST3245MTC | MTC20 | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide | | | | | | | | | FST3245MTCX_NL | MTC20 | Pb-Free 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm | | | | | | | | | (Note 1) | | Wide | | | | | | | | Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only. ## **Logic Diagram** ## **Connection Diagram** ## **Pin Descriptions** | Pin Name | Description | |----------|-------------------| | ŌĒ | Bus Switch Enable | | A | Bus A | | В | Bus B | ## **Truth Table** | Input OE | Function | | | |----------|------------|--|--| | L | Connect | | | | Н | Disconnect | | | # Absolute Maximum Ratings(Note 2) # Recommended Operating Conditions (Note 4) $\begin{array}{ll} \mbox{Power Supply Operating (V_{CC})} & 4.0 \mbox{V to } 5.5 \mbox{V} \\ \mbox{Input Voltage (V_{IN})} & 0 \mbox{V to } 5.5 \mbox{V} \\ \mbox{Output Voltage (V_{OUT})} & 0 \mbox{V to } 5.5 \mbox{V} \\ \end{array}$ Input Rise and Fall Time (t_r, t_f) $\begin{tabular}{ll} Switch Control Input & 0nS/V to 5nS/V \\ Switch I/O & 0nS/V to DC \\ Free Air Operating Temperature (T_A) & -40 \ ^{\circ}C \ to +85 \ ^{\circ}C \\ \end{tabular}$ Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation. **Note 3:** The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed. Note 4: Unused control inputs must be held HIGH or LOW. They may not float. #### **DC Electrical Characteristics** | | | V _{CC} (V) | T _A = -40 °C to +85 °C | | | | | | |-------------------|---------------------------------------|---------------------|-----------------------------------|-----------------|------|-------|---|--| | Symbol | Parameter | | Min | Typ
(Note 5) | Max | Units | Conditions | | | V _{IK} | Clamp Diode Voltage | 4.5 | | 1000 | -1.2 | V | I _{IN} = -18 mA | | | V _{IH} | HIGH Level Input Voltage | 4.0-5.5 | 2.0 | | | V | | | | V _{IL} | LOW Level Input Voltage | 4.0-5.5 | | | 0.8 | V | | | | II | Input Leakage Current | 5.5 | | | ±1.0 | μА | $0 \le V_{IN} \le 5.5V$ | | | I _{OZ} | OFF-STATE Leakage Current | 5.5 | | | ±1.0 | μА | 0 ≤A, B ≤ V _{CC} | | | R _{ON} | Switch On Resistance | 4.5 | 3 | 4 | 7 | Ω | V _{IN} = 0V, I _{IN} = 64 mA | | | | (Note 6) | 4.5 | | 4 | 7 | Ω | $V_{IN} = 0V$, $I_{IN} = 30$ mA | | | | | 4.5 | | 8 | 15 | Ω | V _{IN} = 2.4V, I _{IN} = 15 mA | | | | | 4.0 | | 11 | 20 | Ω | V _{IN} = 2.4V, I _{IN} = 15 mA | | | I _{CC} | Quiescent Supply Current | 5.5 | | | 3 | μА | $V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$ | | | Δ I _{CC} | Increase in I _{CC} per Input | 5.5 | | | 2.5 | mA | One Input at 3.4V | | | | | | | | | | Other Inputs at V _{CC} or GND | | Note 5: Typical values are at $V_{CC} = 5.0V$ and $T_A = +25^{\circ}C$ Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins. ## **AC Electrical Characteristics** | | _ | $T_A = -40$ °C to +85 °C,
$C_L = 50$ pF, RU = RD = 500Ω | | | | I I Ir - | | Figure | |-------------------------------------|---------------------------------------|---|------|------------------------|------|----------|--|-----------------| | Symbol | Parameter | V _{CC} = 4.5 - 5.5V | | V _{CC} = 4.0V | | Units | Conditions | Number | | | | Min | Max | Min | Max | | | | | t _{PHL} ,t _{PLH} | Propagation Delay Bus to Bus (Note 7) | | 0.25 | | 0.25 | ns | V _I = OPEN | Figures
1, 2 | | t _{PZH} , t _{PZL} | Output Enable Time | 1.5 | 5.9 | | 6.4 | | $V_I = 7V$ for t_{PZL}
$V_I = OPEN$ for t_{PZH} | Figures
1, 2 | | t _{PHZ} , t _{PLZ} | Output Disable Time | 1.5 | 6.0 | | 5.7 | ns | $V_I = 7V$ for t_{PLZ}
$V_I = OPEN$ for t_{PHZ} | Figures
1, 2 | Note 7: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage the source (zero output impedance). ## Capacitance (Note 8) | Symbol | Parameter | Тур | Max | Units | Conditions | |------------------|-------------------------------|-----|-----|-------|-----------------------------------| | C _{IN} | Control Pin Input Capacitance | 3 | | pF | V _{CC} = 5.0V | | C _{I/O} | Input/Output Capacitance | 5 | | pF 🚜 | V_{CC} , $\overline{OE} = 5.0V$ | Note 8: T_A = +25°C, f = 1 MHz, Capacitance is characterized but not tested. ## **AC Loading and Waveforms** Note: Input driven by 50 Ω source terminated in 50 Ω Note: C_L includes load and stray capacitance Note: Input PRR = 1.0 MHz t_W = 500 ns FIGURE 1. AC Test Circuit FIGURE 2. AC Waveforms 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20 ## **Technology Description** The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product. Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com