8-Bit Shift Register with Output Storage Register (3-State) The MC74VHC595 is an advanced high speed 8-bit shift register with an output storage register fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The MC74VHC595 contains an 8-bit static shift register which feeds an 8-bit storage register. Shift operation is accomplished on the positive going transition of the Shift Clock input (SCK). The output register is loaded with the contents of the shift register on the positive going transition of the Register Clock input (RCK). Since the RCK and SCK signals are independent, parallel outputs can be held stable during the shift operation. And, since the parallel outputs are 3–state, the VHC595 can be directly connected to an 8–bit bus. This register can be used in serial–to–parallel conversion, data receivers, etc. The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7V, allowing the interface of 5V systems to 3V systems. - High Speed: f_{max} = 185MHz (Typ) at V_{CC} = 5V - Low Power Dissipation: I_{CC} = 4μA (Max) at T_A = 25°C - High Noise Immunity: V_{NIH} = V_{NIL} = 28% V_{CC} - Power Down Protection Provided on Inputs - Balanced Propagation Delays - Designed for 2V to 5.5V Operating Range - Low Noise: Volp = 1.0V (Max) - Pin and Function Compatible with Other Standard Logic Families - Latchup Performance Exceeds 300mA - ESD Performance: HBM > 2000V; Machine Model > 200V - Chip Complexity: 328 FETs or 82 Equivalent Gates #### LOGIC DIAGRAM #### **MC74VHC595** #### **D SUFFIX** 16–LEAD SOIC PACKAGE CASE 751B–05 #### **DT SUFFIX** 16-LEAD TSSOP PACKAGE CASE 948F-01 ## M SUFFIX 16-LEAD SOIC EIAJ PACKAGE CASE 966-01 #### **ORDERING INFORMATION** | MC74VHCXXXD | SOIC | |--------------|-----------| | MC74VHCXXXDT | TSSOP | | MC74VHCXXXM | SOIC EIAJ | #### PIN ASSIGNMENT 6/97 REV 1 #### **FUNCTION TABLE** | | | | Inputs | | | | Resulting F | unction | | |---|-----------------|-------------------------|-------------------------|-----------------------|--------------------------|---|-----------------------------------|----------------------------------|----------------------------------| | Operation | Reset
(SCLR) | Serial
Input
(SI) | Shift
Clock
(SCK) | Reg
Clock
(RCK) | Output
Enable
(OE) | Shift
Register
Contents | Storage
Register
Contents | Serial
Output
(SQH) | Parallel
Outputs
(QA – QH) | | Clear shift register | L | Х | Х | L, H, ↓ | L | L | U | L | U | | Shift data into shift register | Н | D | 1 | L, H, ↓ | L | D→SR _A ;
SR _N →SR _{N+1} | U | SR _G →SR _H | U | | Registers remains unchanged | Н | Х | L, H, ↓ | Х | L | U | ** | U | ** | | Transfer shift register contents to storage register | Н | Х | L, H, ↓ | 1 | L | U | SR _N →STR _N | * | SRN | | Storage register remains unachanged | Х | Х | Х | L, H, ↓ | L | * | U | * | U | | Enable parallel outputs | Х | Х | Х | Х | L | * | ** | * | Enabled | | Force outputs into high impedance state | Х | Х | Х | Х | Н | * | ** | * | Z | | R = shift register contents D = data (L, H) logic level ↓ = High-to-Low * = depends on Reset and Shift Clock inputs TR = storage register contents U = remains unchanged ↑ = Low-to-High ** = depends on Register Clock input MAXIMUM RATINGS* | | | | | | | | | | | IAXIMUM RATINGS* | | | | | | | | | | | MAXIMU | WI KATINGS" | 26 43 | | | |------------------|---|--------------------------------|------|--| | Symbol | Parameter | Value | Unit | | | Vcc | DC Supply Voltage | - 0.5 to + 7.0 | V | | | V _{in} | DC Input Voltage | -0.5 to $+7.0$ | V | | | V _{out} | DC Output Voltage | - 0.5 to V _{CC} + 0.5 | V | | | IIK | Input Diode Current | - 20 | mA | | | lok | Output Diode Current | ± 20 | mA | | | l _{out} | DC Output Current, per Pin | ± 25 | mA | | | Icc | DC Supply Current, VCC and GND Pins | ± 50 | mA | | | PD | Power Dissipation in Still Air, SOIC Packages† TSSOP Package† | 500
450 | mW | | | | 1550F Fackage | 430 | | | | T _{stg} | Storage Temperature | - 65 to + 150 | °C | | Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. †Derating -SOIC Packages: - 7 mW/°C from 65° to 125°C TSSOP Package: - 6.1 mW/°C from 65° to 125°C #### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | Parameter | | | Unit | |---------------------------------|--------------------------------------|---|--------|-----------|------| | VCC | DC Supply Voltage | | 2.0 | 5.5 | V | | Vin | DC Input Voltage | | | 5.5 | V | | V _{out} | DC Output Voltage | | 0 | Vcc | V | | TA | Operating Temperature, All Package T | ypes | - 40 | + 85 | °C | | t _r , t _f | Input Rise and Fall Time \ | / _{CC} = 3.3V ±0.3V
/ _{CC} =5.0V ±0.5V | 0
0 | 100
20 | ns/V | 2 This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $V_{\mbox{in}}$ and Vout should be constrained to the $\text{range GND} \leq (V_{in} \, \text{or} \, V_{out}) \leq V_{CC}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open. #### DC ELECTRICAL CHARACTERISTICS | | | | VCC | | T _A = 25°C | | $T_A = -40$ |) to 85°C | | |--------|---|---|----------------------|-------------------------------|-----------------------|-------------------------------|-------------------------------|-------------------------------|------| | Symbol | Parameter | Test Conditions | "V" | Min | Тур | Max | Min | Max | Unit | | VIH | Minimum High–Level
Input Voltage | | 2.0
3.0 to
5.5 | 1.50
V _{CC} x 0.7 | | | 1.50
V _{CC} x 0.7 | | V | | VIL | Maximum Low–Level
Input Voltage | | 2.0
3.0 to
5.5 | | | 0.50
V _{CC} x 0.3 | | 0.50
V _{CC} x 0.3 | V | | VOH | Minimum High–Level
Output Voltage | V _{in} = V _{IH} or V _{IL}
I _{OH} = – 50μA | 2.0
3.0
4.5 | 1.9
2.9
4.4 | 2.0
3.0
4.5 | | 1.9
2.9
4.4 | | V | | | | $V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}}$ $I_{\text{OH}} = -4\text{mA}$ $I_{\text{OH}} = -8\text{mA}$ | 3.0
4.5 | 2.58
3.94 | | | 2.48
3.80 | | | | VOL | Maximum Low–Level
Output Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$I_{OL} = 50 \mu A$ | 2.0
3.0
4.5 | | 0.0
0.0
0.0 | 0.1
0.1
0.1 | | 0.1
0.1
0.1 | V | | | | V _{in} = V _{IH} or V _{IL}
I _{OL} = 4mA
I _{OL} = 8mA | 3.0
4.5 | 3 | 44.18 | 0.36
0.36 | | 0.44
0.44 | | | loz | Three–State Output
Off–State Current | V _{in} = V _{IH} or V _{IL}
V _{out} = V _{CC} or GND | 5.5 | 逐为 | M | ± 0.25 | | ± 2.50 | μΑ | | lin | Maximum Input
Leakage Current | V _{in} = 5.5V or GND | 0 to 5.5 | ,C | , | ± 0.1 | | ± 1.0 | μА | | ICC | Maximum Quiescent
Supply Current | V _{in} = V _{CC} or GND | 5.5 | | | 4.0 | | 40.0 | μΑ | ## AC ELECTRICAL CHARACTERISTICS (Input $t_f = t_f = 3.0 \text{ ns}$) | | | | | | T _A = 25°C | | T _A = -40 |) to 85°C | | |--|---|---|--|-----------|-----------------------|--------------|----------------------|--------------|------| | Symbol | Parameter | Test Condi | tions | Min | Тур | Max | Min | Max | Unit | | fmax | Maximum Clock Frequency
(50% Duty Cycle) | $V_{CC} = 3.3 \pm 0.3V$
$R_L = 1k\Omega$ | C _L = 15pF
C _L = 50pF | 80
55 | 150
130 | | 70
50 | | MHz | | | | $V_{CC} = 5.0 \pm 0.5V$
$R_L = 1k\Omega$ | $C_L = 15pF$
$C_L = 50pF$ | 135
95 | 185
155 | | 115
85 | | | | tPLH,
tPHL | Propagation Delay,
SCK to SQH | $V_{CC} = 3.3 \pm 0.3 V$ | $C_L = 15pF$
$C_L = 50pF$ | | 8.8
11.3 | 13.0
16.5 | 1.0
1.0 | 15.0
18.5 | ns | | | | $V_{CC} = 5.0 \pm 0.5 V$ | $C_L = 15pF$
$C_L = 50pF$ | | 6.2
7.7 | 8.2
10.2 | 1.0
1.0 | 9.4
11.4 | | | ^t PHL | Propagation Delay,
SCLR to SQH | $V_{CC} = 3.3 \pm 0.3 V$ | $C_L = 15pF$
$C_L = 50pF$ | | 8.4
10.9 | 12.8
16.3 | 1.0
1.0 | 13.7
17.2 | ns | | | | $V_{CC} = 5.0 \pm 0.5 V$ | $C_L = 15pF$
$C_L = 50pF$ | | 5.9
7.4 | 8.0
10.0 | 1.0
1.0 | 9.1
11.1 | | | tPLH,
tPHL | Propagation Delay,
RCK to QA – QH | $V_{CC} = 3.3 \pm 0.3 V$ | $C_L = 15pF$
$C_L = 50pF$ | | 7.7
10.2 | 11.9
15.4 | 1.0
1.0 | 13.5
17.0 | ns | | | | $V_{CC} = 5.0 \pm 0.5 V$ | C _L = 15pF
C _L = 50pF | | 5.4
6.9 | 7.4
9.4 | 1.0
1.0 | 8.5
10.5 | | | t _{PZL} ,
t _{PZH} | Output Enable Time,
OE to QA – QH | $V_{CC} = 3.3 \pm 0.3V$ $R_L = 1k\Omega$ | C _L = 15pF
C _L = 50pF | | 7.5
9.0 | 11.5
15.0 | 1.0
1.0 | 13.5
17.0 | ns | | | | $V_{CC} = 5.0 \pm 0.5V$ $R_{L} = 1k\Omega$ | C _L = 15pF
C _L = 50pF | | 4.8
8.3 | 8.6
10.6 | 1.0
1.0 | 10.0
12.0 | | #### AC ELECTRICAL CHARACTERISTICS (Input $t_{\Gamma} = t_f = 3.0 \text{ ns}$) | | | | | T _A = 25°C | | T _A = -40 to 85°C | | | | |------------------|---|--|-----------------------|-----------------------|------|------------------------------|-----|------|------| | Symbol | Parameter | Test Condit | ions | Min | Тур | Max | Min | Max | Unit | | tPLZ,
tPHZ | Output Disable Time,
OE to QA – QH | $\begin{aligned} &\text{VCC} = 3.3 \pm 0.3 \text{V} \\ &\text{RL} = 1 \text{k} \Omega \end{aligned}$ | C _L = 50pF | | 12.1 | 15.7 | 1.0 | 16.2 | ns | | | | $V_{CC} = 5.0 \pm 0.5V$ $R_{L} = 1k\Omega$ | C _L = 50pF | | 7.6 | 10.3 | 1.0 | 11.0 | | | C _{in} | Input Capacitance | | | | 4 | 10 | | 10 | pF | | C _{out} | Three–State Output
Capacitance (Output in High–
Impedance State), QA – QH | | | | 6 | | | 10 | | | | | Typical @ 25°C, V _{CC} = 5.0V | | | |----------|---|--|----|---| | C_{PD} | Power Dissipation Capacitance (Note 1.) | 87 | pF | ١ | ^{1.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. #### **NOISE CHARACTERISTICS** (Input $t_f = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 5.0$ V) | | 3: 3 | T _A = | T _A = 25°C | | | |------------------|--|------------------|-----------------------|------|--| | Symbol | Characteristic | Тур | Max | Unit | | | VOLP | Quiet Output Maximum Dynamic VOL | 0.8 | 1.0 | V | | | VOLV | Quiet Output Minimum Dynamic VOL | - 0.8 | - 1.0 | V | | | VIHD | Minimum High Level Dynamic Input Voltage | | 3.5 | V | | | V _{ILD} | Maximum Low Level Dynamic Input Voltage | | 1.5 | V | | ### TIMING REQUIREMENTS (Input $t_r = t_f = 3.0$ ns) | | | Vcc | T _A = 25°C | | T _A = -40 to
85°C | | |--------------------|----------------------------|------------|-----------------------|------------|---------------------------------|------| | Symbol | Parameter | v | Тур | Limit | Limit | Unit | | t _{su} | Setup Time, SI to SCK | 3.3
5.0 | | 3.5
3.0 | 3.5
3.0 | ns | | t _{su(H)} | Setup Time, SCK to RCK | 3.3
5.0 | | 8.0
5.0 | 8.5
5.0 | ns | | t _{su(L)} | Setup Time, SCLR to RCK | 3.3
5.0 | | 8.0
5.0 | 9.0
5.0 | ns | | ^t h | Hold Time, SI to SCK | 3.3
5.0 | | 1.5
2.0 | 1.5
2.0 | ns | | ^t h(L) | Hold Time, SCLR to RCK | 3.3
5.0 | | 0
0 | 0
0 | ns | | t _{rec} | Recovery Time, SCLR to SCK | 3.3
5.0 | | 3.0
2.5 | 3.0
2.5 | ns | | t _W | Pulse Width, SCK or RCK | 3.3
5.0 | | 5.0
5.0 | 5.0
5.0 | ns | | tw(L) | Pulse Width, SCLR | 3.3
5.0 | | 5.0
5.0 | 5.0
5.0 | ns | #### **SWITCHING WAVEFORMS** #### **TEST CIRCUITS** 5 ^{*} Includes all probe and jig capacitance Figure 7. ^{*} Includes all probe and jig capacitance Figure 8. #### **EXPANDED LOGIC DIAGRAM** #### **TIMING DIAGRAM** #### **INPUT EQUIVALENT CIRCUIT** 7 #### **OUTLINE DIMENSIONS** #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - 1 T4-JMI, 1992. CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIM | ETERS | INC | HES | |-----|--------|-------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.2 | 7 BSC | 0.050 | BSC | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | P | 5.80 | 6.20 | 0.229 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | #### **OUTLINE DIMENSIONS** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) - 4. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). | | MILLIMETERS | | INC | HES | |----------------|-------------|-------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 2.05 | - | 0.081 | | A ₁ | 0.05 | 0.20 | 0.002 | 0.008 | | b | 0.35 | 0.50 | 0.014 | 0.020 | | С | 0.18 | 0.27 | 0.007 | 0.011 | | D | 9.90 | 10.50 | 0.390 | 0.413 | | E | 5.10 | 5.45 | 0.201 | 0.215 | | е | 1.27 | BSC | 0.050 |) BSC | | HE | 7.40 | 8.20 | 0.291 | 0.323 | | L | 0.50 | 0.85 | 0.020 | 0.033 | | LF | 1.10 | 1.50 | 0.043 | 0.059 | | M | 0 ° | 10° | 0 ° | 10° | | Q_1 | 0.70 | 0.90 | 0.028 | 0.035 | | Z | | 0.78 | _ | 0.031 | Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury $or death\,may\,occur.\,Should\,Buyer\,pur chase\,or\,use\,Motorola\,products\,for\,any\,such\,unintended\,or\,unauthorized\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pure,\,Anderson,\,Anderso$ and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Mfax is a trademark of Motorola, Inc. USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488 Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 - US & Canada ONLY 1-800-774-1848 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298 INTERNET: http://motorola.com/sps MC74VHC595/D