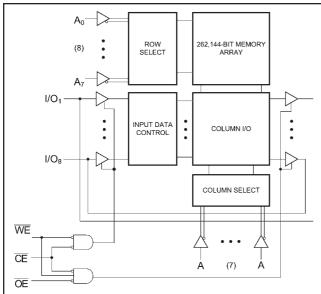
P4C1256L LOW POWER 32K x 8 STATIC CMOS RAM

FEATURES

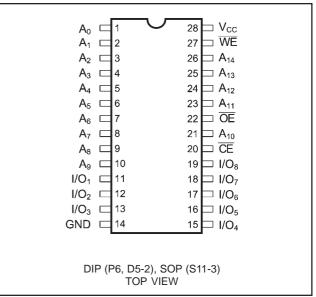
- V_{cc} Current (Commercial/Industrial)
 Operating: 70mA/85mA
 CMOS Standby: 100µA/100µA
- Access Times
 —55/70 (Commercial or Industrial)
- Single 5 Volts ±10% Power Supply
- Easy Memory Expansion Using CE and OE Inputs
- Common Data I/O
- Three-State Outputs
- Fully TTL Compatible Inputs and Outputs
- Advanced CMOS Technology
- Automatic Power Down
- Packages
 —28-Pin 600 mil DIP
 28 Pin 200 mil CERDIR
 - -28-Pin 300 mil CERDIP
 - -28-Pin 300 mil Narrow Body SOP

DESCRIPTION


The P4C1256L is a 262,144-bit low power CMOS static RAM organized as 32Kx8. The CMOS memory requires no clocks or refreshing, and has equal access and cycle times. Inputs are fully TTL-compatible. The RAM operates from a single 5V±10% tolerance power supply.

Access times of 55 ns and 70 ns are available. CMOS is utilized to reduce power consumption to a low level.

The P4C1256L device provides asynchronous operation with matching access and cycle times. Memory locations are specified on address pins A_0 to A_{14} . Reading is accomplished by device selection (CE and output enabling (OE) while write enable (WE) remains HIGH. By presenting the address under these conditions, the data in the addressed memory location is presented on the data input/output pins. The input/output pins stay in the HIGH Z state when either CE or OE is HIGH or WE is LOW.


Package options for the P4C1256L include 28-pin 600 mil DIP, 28-pin 300 mil CERDIP, and 28-pin 300 mil Narrow Body SOP packages.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

Document # SRAM121 REV E

RECOMMENDED OPERATING TEMPERATURE & SUPPLY VOLTAGE

Temperature Range (Ambient)	Supply Voltage
Commercial (0°C to 70°C)	$4.5V \le V_{\rm CC} \le 5.5V$
Industrial (-40°C to 85°C)	$4.5 \le V_{cc} \le 5.5 V$

MAXIMUM RATINGS⁽¹⁾

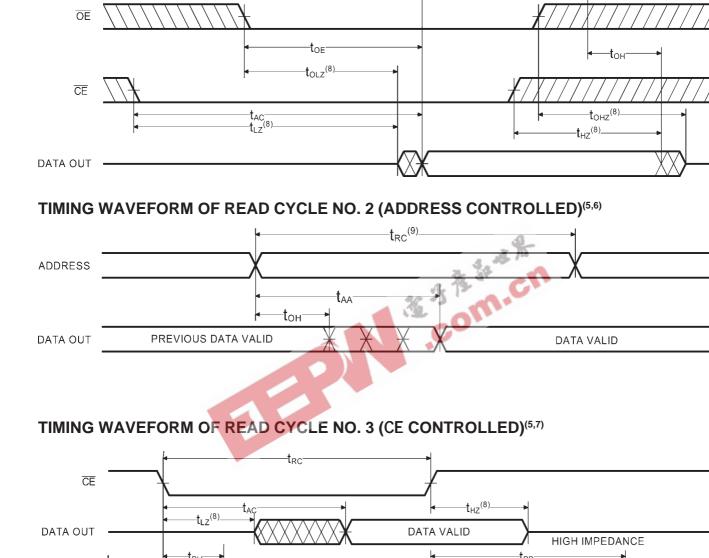
Stresses greater than those listed can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this data sheet. Exposure to Maximum Ratings for extended periods can adversely affect device reliability.

Symbol	Parameter	Min	Мах	Unit
V _{cc}	Supply Voltage with Respect to GND	-0.5	7.0	V
V	Terminal Voltage with Respect to GND (up to 7.0V)	-0.5	V _{cc} + 0.5	V
T _A	Operating Ambient Temperature	-55	125	°C
S _{TG}	Storage Temperature	-65	150	°C
I _{out}	Output Current into Low Outputs	4.57	25	mA
I _{LAT}	Latch-up Current	>200		mA

Symbol	Parameter	Test Conditions	5	Min	Max	Unit
V _{OH}	Output High Voltage (I/O ₀ - I/O ₇)	$I_{oH} = -1mA, V_{cc} = 4.5V$		2.4		V
V _{ol}	Output Low Voltage (I/O ₀ - I/O ₇)	I _{oL} = 2.1mA			0.4	V
V _{IH}	Input High Voltage			2.2	V _{cc} + 0.3	V
V _{IL}	Input Low Voltage			-0.5 ⁽³⁾	0.8	V
I _U	Input Leakage Current	$\text{GND} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{CC}}$	Ind'l. Com'l.	-5 -2	+5 +2	μA
I _{LO}	Output Leakage Current	$\begin{array}{l} \textbf{GND} \leq \textbf{V}_{\text{OUT}} \leq \textbf{V}_{\text{CC}} \\ \textbf{CE} \geq \textbf{V}_{\text{IH}} \end{array}$	Ind'l. Com'l.	-5 -2	+5 +2	μA
I _{SB}	V _{cc} Current TTL Standby Current (TTL Input Levels)	$V_{cc} = 5.5V, I_{out} = 0 \text{ mA}$ CE = V_{IH}			3	mA
I _{SB1}	V _{cc} Current CMOS Standby Current (CMOS Input Levels)	$V_{cc} = 5.5V, I_{out} = 0 \text{ mA}$ CE $\geq V_{cc}$ -0.2V			100	μA

CAPACITANCES⁽⁴⁾

 $(V_{cc} = 5.0V, T_{A} = 25^{\circ}C, F = 1.0 \text{ MHz})$


Symbol	Parameter	Test Conditions	Мах	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$	7	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	9	pF

POWER DISSIPATION CHARACTERISTICS VS. SPEED

Or mark all	Devementer	Temperature		*	,	**	l lm it
Symbol	Parameter	Range	-55	-70	-55	-70	Unit
I _{cc}	Dynamic Operating Current	Commercial	70	70	15	15	mA
	Dynamic Operating Ourient	Industrial	85	85	25	25	mA

*Tested with outputs open and all address and data inputs changing at the maximum write-cycle rate. The device is continuously enabled for writing, i.e. CE and WE \leq V_{IL} (max), OE is high. Switching inputs are 0V and 3V.

C ELE(but @ f=1 MHz and V _{IL} / V CTRICAL CHARAC ommended Operating Te Parameter	TERISTICS	- READ CY Supply Voltage	STE SE SE	n	
Symbol	Parameter	-5	5	-7	70	Unit
t _{RC}	Read Cycle Time	Min 55	Wiax	Min 70	Мах	ns
t _{AA}	Address Access Time		55		70	ns
t _{AC}	Chip Enable Access Time		55		70	ns
t _{oH}	Output Hold from Address Change	5		5		ns
t _{LZ}	Chip Enable to Output in Low Z	5		5		ns
t _{HZ}	Chip Disable to Output in High Z		20		25	ns
t _{oe}	Output Enable Low to Data Valid		30		35	ns
t _{oLZ}	Output Enable Low to Low Z	5		5		ns
t _{oHZ}	Output Enable High to High Z		20		25	ns
t _{PU}	Chip Enable to Power Up Time	0		0		ns
t _{PD}	Chip Disable to Power Down Time		55		70	ns

TIMING WAVEFORM OF READ CYCLE NO. 1 (OE CONTROLLED)⁽⁵⁾

t_{AA}

-t_{RC}⁽⁹⁾-

Notes:

V_{cc} SUPPLY CURRENT lco

ISB

P4C1256L

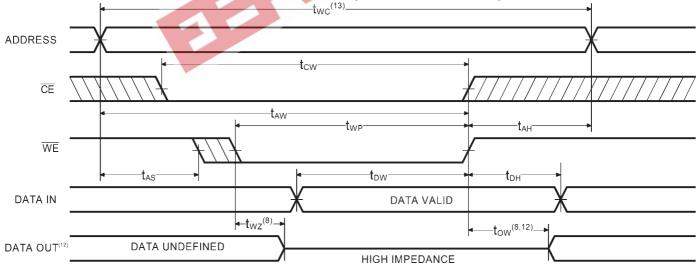
ADDRESS

1. Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to MAXIMUM rating conditions for extended periods may affect reliability.

t₽U

- 2. Extended temperature operation guaranteed with 400 linear feet per minute of air flow.
- 3. Transient inputs with $V_{_{I\!L}}$ and $I_{_{I\!L}}$ not more negative than –3.0V and -100mA, respectively, are permissible for pulse widths up to 20 ns.
- 4. This parameter is sampled and not 100% tested.

-t_{PD}


- 5. WE is HIGH for READ cycle.
- 6. CE is LOW and OE is LOW for READ cycle.
- 7. ADDRESS must be valid prior to, or coincident with CE transition LOW.
- 8. Transition is measured ± 200 mV from steady state voltage prior to change, with loading as specified in Figure 1. This parameter is sampled and not 100% tested.
- 9. Read Cycle Time is measured from the last valid address to the first transitioning address.

AC CHARACTERISTICS - WRITE CYCLE

(Over Recommended Operating Temperature & Supply Voltage)

Symbol	Parameter	-{	55	-70)	Unit
Symbol	Farameter	Min	Мах	Min	Max	Onit
t _{wc}	Write Cycle Time	55		70		ns
t _{cw}	Chip Enable Time to End of Write	50		60		ns
t _{AW}	Address Valid to End of Write	50		60		ns
t _{AS}	Address Set-up Time	0		0		ns
$t_{_{\rm WP}}$	Write Pulse Width	40		50		ns
t _{AH}	Address Hold Time	0		0		ns
t _{DW}	Data Valid to End of Write	25		30		ns
t _{DH}	Data Hold Time	0		0		ns
t _{wz}	Write Enable to Output in High Z		25	0 3 M	30	ns
t _{ow}	Output Active from End of Write	5		CO 5		ns

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED)(10,11)

- Notes: 10. CE and WE must be LOW for WRITE cycle.

11. OE is LOW for this WRITE cycle to show $t_{\rm wz}$ and $t_{\rm ow}.$ 12. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high impedance state

13. Write Cycle Time is measured from the last valid address to the first transitioning address.

P4C1256L

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CE CONTROLLED)(10)

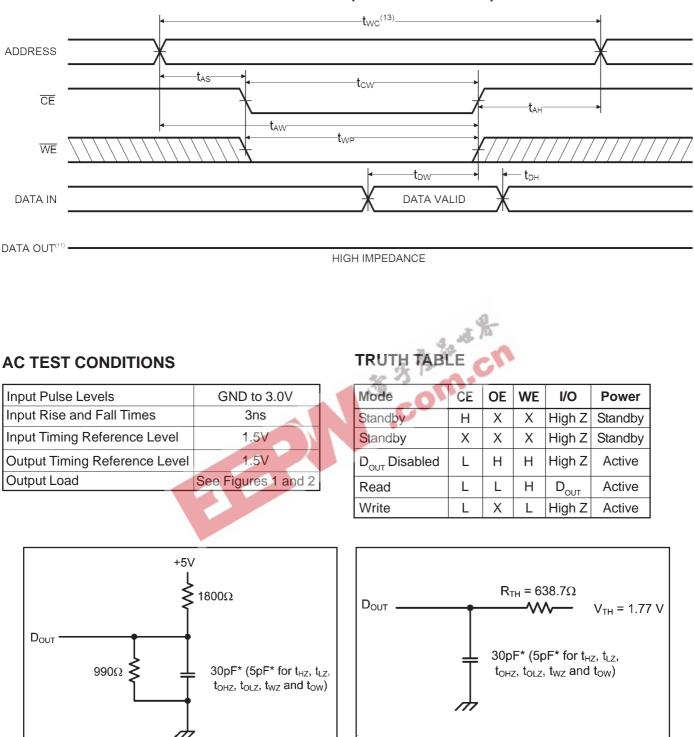


Figure 1. Output Load

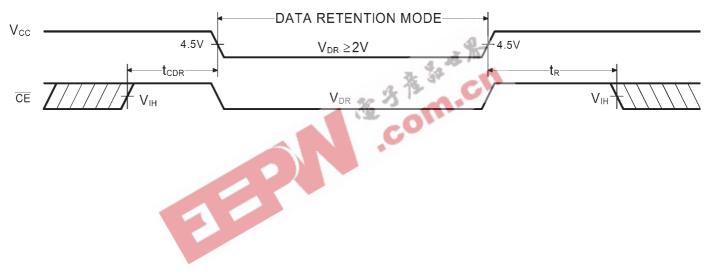
* including scope and test fixture.

Note:

Because of the high speed of the P4C1256L, care must be taken when testing this device; an inadequate setup can cause a normal functioning part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the V_{cc} and ground planes directly up to the contactor fingers. A 0.01 μF high frequency capacitor is also required between V_{cc} and ground.

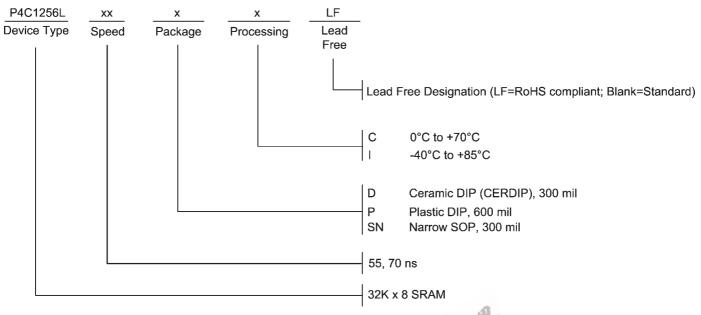
To avoid signal reflections, proper termination must be used; for example, a 50 Ω test environment should be terminated into a 50 Ω load with 1.77V (Thevenin Voltage) at the comparator input, and a 589 Ω resistor must be used in series with D_{OUT} to match 639 Ω (Thevenin Resistance).

DATA RETENTION CHARACTERISTICS


Symbol	Parameter	Test Conditons	Min	Ty V _c	_ =		ax _c =	Unit
				2.0V	3.0V	2.0V	3.0V	
V _{DR}	$\rm V_{cc}$ for Data Retention		2.0					V
I _{CCDR}	Data Retention Current	$CE \ge V_{cc} - 0.2V,$		10	15	600	900	μΑ
t _{cdr}	Chip Deselect to Data Retention Time	$V_{\rm IN} \ge V_{\rm CC} - 0.2V$	0					ns
t_R^{\dagger}	Operation Recovery Time	or $V_{IN} \le 0.2V$	t _{RC} §					ns

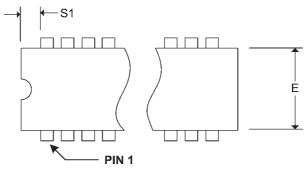
*T_A = +25°C

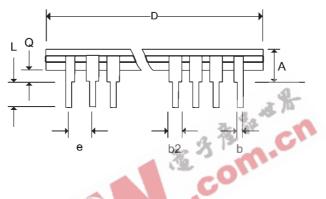
 $t_{RC} = Read Cycle Time$


⁺ This parameter is guaranteed but not tested.

DATA RETENTION WAVEFORM

ORDERING INFORMATION

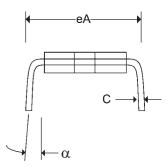

SELECTION GUIDE


The P4C1256L is available in the following temperature, speed and package options.

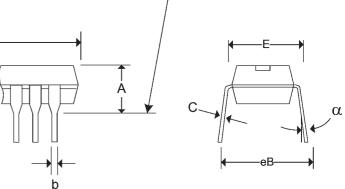
Temperature	Deskere	Speed (ns)			
Range	Package	55	70		
Commercial	Plastic DIP, 600 mil	-55PC	-70PC		
	Ceramic DIP (CERDIP)	-55DC	-70DC		
	Plastic SOJ, 300 mil	-55SNC	-70SNC		
Industrial	Plastic DIP, 600 mil	-55PI	-70PI		
	Ceramic DIP (CERDIP)	-55DI	-70DI		
	Plastic SOJ, 300 mil	-55SNI	-70SNI		

Pkg #	D5-2			
# Pins	28 (300 mil)			
Symbol	Min	Max		
А	-	0.225		
b	0.014	0.026		
b2	0.045	0.065		
С	0.008	0.018		
D	-	1.485		
E	0.240	0.310		
eA	0.300	BSC		
е	0.100	BSC		
L	0.125	0.200		
Q	0.015	0.060		
S1	0.005	-		
α	0°	15°		

CERDIP DUAL IN-LINE PACKAGE



PLASTIC DUAL IN-LINE PACKAGE


b2

е

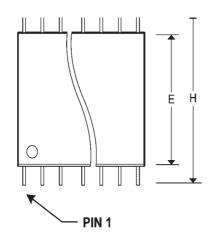
Pkg #	P6				
# Pins	28 (600 mil)				
Symbol	Min	Max			
А	0.090	0.200			
A1	0.000	0.070			
b	0.014	0.020			
b2	0.015	0.065			
С	0.008	0.012			
D	1.380	1.480			
E1	0.485	0.550			
E	0.600	0.625			
е	0.100	BSC			
eB	0.600 TYP				
L	0.100	0.200			
α	0°	15°			

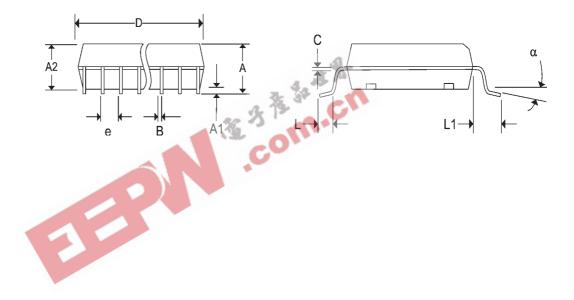
L A1

 Pkg #
 S11-3

 # Pins
 28 (300 Mil)

 Symbol
 Min
 Max


 A
 0.094
 0.110


 A1
 0.002
 0.014

 B
 0.014
 0.020

А	0.094	0.110	
A1	0.002	0.014	
В	0.014	0.020	
С	0.008	0.012	
D	0.702	0.710	
е	0.050 BSC		
Е	0.291	0.300	
Η	0.463	0.477	
h	0.010	0.029	
L	0.020	0.042	
α	0°	8°	

SOIC/SOP SMALL OUTLINE IC PACKAGE

REVISIONS

DOCUMENT NUMBER: DOCUMENT TITLE:		SRAM121 P4C1256L LOW POWER 32K x 8 STATIC CMOS RAM	
REV.	ISSUE DATE	ORIG. OF CHANGE	DESCRIPTION OF CHANGE
OR	1997	DAB	New Data Sheet
А	Oct-05	JDB	Change logo to Pyramid
В	Jun-06	JDB	Added 28-pin ceramic DIP
С	Aug-06	JDB	Added Lead Free Designation
D	Mar-07	JDB	Corrected Narrow SOP width in Ordering Information and Selection Guide
E	Jun-07	JDB	Corrected Narrow SOP package dimensions
			Corrected Narrow SOP package dimensions
		1	