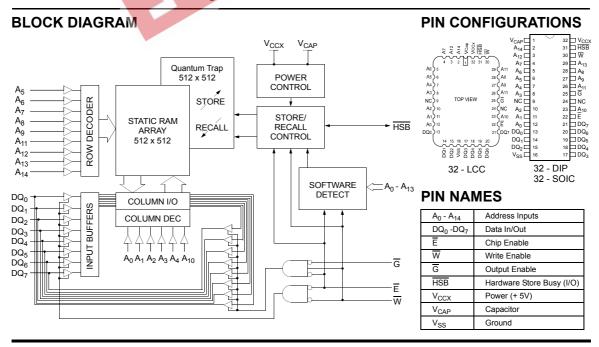


STK14C88


32K x 8 AutoStore™ nvSRAM QuantumTrap™ CMOS Nonvolatile Static RAM

FEATURES

- · 25ns. 35ns and 45ns Access Times
- "Hands-off" Automatic STORE with External 68µF Capacitor on Power Down
- *STORE* to nonvolatile elements Initiated by Hardware, Software or *AutoStore*™
- RECALL to SRAM Initiated by Software or Power Restore
- 10mA Typical Icc at 200ns Cycle Time
- Unlimited READ, WRITE and RECALL Cycles
- 1,000,000 STORE Cycles to nonvolatile elements (Commercial/Industrial)
- 100-Year Data Retention in nonvolatile elements (Commercial/Industrial)
- Single 5V + 10% Operation
- Commercial, Industrial and Military Temperatures
- 32-Pin SOIC, DIP and LCC Packages

DESCRIPTION

The Simtek STK14C88 is a fast static RAM with a nonvolatile element incorporated in each static memory cell. The SRAM can be read and written an unlimited number of times, while independent, nonvolatile data resides in the nonvolatile elements. Data transfers from the SRAM to the nonvolatile elements (the STORE operation) can take place automatically on power down. A 68μF or larger capacitor tied from V_{CAP} to ground guarantees the STORE operation, regardless of power-down slew rate or loss of power from "hot swapping". Transfers from the nonvolatile elements to the SRAM (the RECALL operation) take place automatically on restoration of power. Initiation of STORE and RECALL cycles can also be software controlled by entering specific read sequences. A hardware STORE may be initiated with the HSB pin.

ABSOLUTE MAXIMUM RATINGS^a

Voltage on Input Relative to Ground	0.5V to 7.0V
Voltage on Input Relative to V _{SS} 0.6\	/ to (V _{CC} + 0.5V)
Voltage on DQ ₀₋₇ or HSB	/ to (V _{CC} + 0.5V)
Temperature under Bias	55°C to 125°C
Storage Temperature	65°C to 150°C
Power Dissipation	1W
DC Output Current (1 output at a time, 1s duration) 15mA

Note a: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC CHARACTERISTICS

$$(V_{CC} = 5.0V \pm 10\%)^{e}$$

SYMBOL	PARAMETER	СОММ	ERCIAL	_	STRIAL/ ilitary	UNITS	NOTES
		MIN	MAX	MIN	MAX		
I _{CC1} ^b	Average V _{CC} Current		97 80 70		100 85 70	mA mA mA	t _{AVAV} = 25ns t _{AVAV} = 35ns t _{AVAV} = 45ns
I _{CC2} c	Average V _{CC} Current during STORE		3		3	mA	All Inputs Don't Care, V _{CC} = max
I _{CC3} ^b	Average V _{CC} Current at t _{AVAV} = 200ns 5V, 25°C, Typical		10		10	mA	$\overline{W} \ge (V_{CC} - 0.2V)$ All Others Cycling, CMOS Levels
I _{CC4} c	Average V _{CAP} Current during AutoStore™ Cycle		2		2	mA	All Inputs Don't Care
I _{SB1} ^d	Average V _{CC} Current (Standby, Cycling TTL Input Levels)		30 25 22	40	31 26 23	mA mA mA	$t_{AVAV} = 25ns, \overline{E} \ge V_{IH}$ $t_{AVAV} = 35ns, \overline{E} \ge V_{IH}$ $t_{AVAV} = 45ns, \overline{E} \ge V_{IH}$
I _{SB2} ^d	V _{CC} Standby Current (Standby, Stable CMOS Input Levels)		1.5		1.5	mA	$\overline{E} \ge (V_{CC} - 0.2V)$ All Others $V_{IN} \le 0.2V$ or $\ge (V_{CC} - 0.2V)$
I _{ILK}	Input Leakage Current	(±1		±1	μΑ	V_{CC} = max V_{IN} = V_{SS} to V_{CC}
I _{OLK}	Off-State Output Leakage Current		±5		±5	μА	V_{CC} = max V_{IN} = V_{SS} to V_{CC} , \overline{E} or $\overline{G} \ge V_{IH}$
V_{IH}	Input Logic "1" Voltage	2.2	V _{CC} + .5	2.2	V _{CC} + .5	V	All Inputs
V _{IL}	Input Logic "0" Voltage	V _{SS} 5	0.8	V _{SS} 5	0.8	V	All Inputs
V _{OH}	Output Logic "1" Voltage	2.4		2.4		V	I _{OUT} =-4mA except HSB
V _{OL}	Output Logic "0" Voltage		0.4		0.4	V	I _{OUT} = 8mA except HSB
V_{BL}	Logic "0" Voltage on HSB Output		0.4		0.4	V	I _{OUT} = 3mA
T _A	Operating Temperature	0	70	-40/-55	85/125	°C	

Note b: I_{CC_1} and I_{CC_3} are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded. Note c: I_{CC_2} and I_{CC_4} are the average currents required for the duration of the respective *STORE* cycles (t_{STORE}). Note d: $E \ge V_{IH}$ will not produce standby current levels until any nonvolatile cycle in progress has timed out.

Note e: V_{CC} reference levels throughout this datasheet refer to V_{CCX} if that is where the power supply connection is made, or V_{CAP} if V_{CCX} is connected to ground.

AC TEST CONDITIONS

Input Pulse Levels	3V
Input Rise and Fall Times	ns
Input and Output Timing Reference Levels	5V
Output Load See Figure	: 1

$(T_A = 25^{\circ}C, f = 1.0MHz)$ **CAPACITANCE**^f

SYMBOL	PARAMETER	MAX	UNITS	CONDITIONS
C _{IN}	Input Capacitance	5	pF	ΔV = 0 to 3V
C _{OUT}	Output Capacitance	7	pF	ΔV = 0 to 3V

Note f: These parameters are guaranteed but not tested.

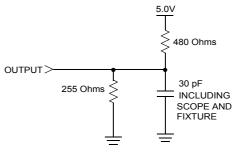
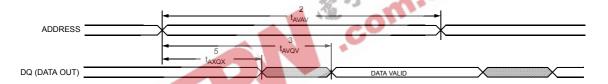
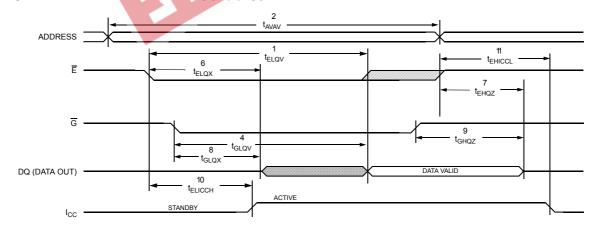


Figure 1: AC Output Loading


SRAM READ CYCLES #1 & #2

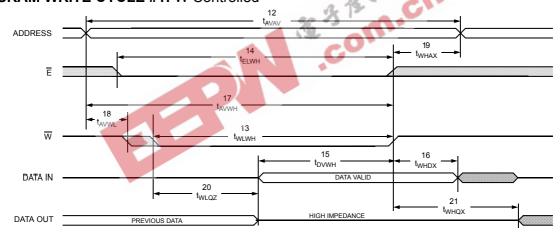
 $(V_{CC} = 5.0V \pm 10\%)^{e}$


NO.	SYMBO	OLS	PARAMETER	STK14	C88-25	STK14	C88-35	STK14	C88-45	UNITS
NO.	#1, #2	Alt.	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
1	t _{ELQV}	t _{ACS}	Chip Enable Access Time		25		35		45	ns
2	t _{AVAV} g	t _{RC}	Read Cycle Time	25		35		45		ns
3	t _{AVQV} h	t _{AA}	Address Access Time		25		35		45	ns
4	t _{GLQV}	t _{OE}	Output Enable to Data Valid		10		15		20	ns
5	t _{AXQX} h	t _{OH}	Output Hold after Address Change	5		5		5		ns
6	t _{ELQX}	t _{LZ}	Chip Enable to Output Active	5		5		5		ns
7	t _{EHQZ} i	t _{HZ}	Chip Disable to Output Inactive		10		13		15	ns
8	t _{GLQX}	t _{OLZ}	Output Enable to Output Active	0		0		0		ns
9	t _{GHQZ} i	t _{OHZ}	Output Disable to Output Inactive		10		13		15	ns
10	t _{ELICCH} f	t _{PA}	Chip Enable to Power Active	0		0		0		ns
11	t _{EHICCL} f	t _{PS}	Chip Disable to Power Standby		25		35		45	ns

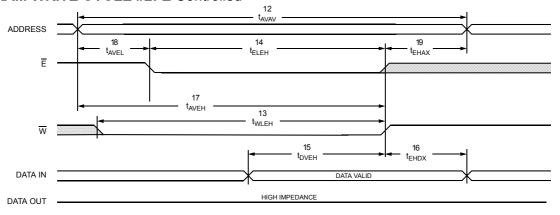
Note g: \overline{W} and \overline{HSB} must be high during SRAM READ cycles and low during SRAM WRITE cycles. Note h: I/O state assumes \overline{E} and $\overline{G} \leq V_{IL}$ and $\overline{W} \geq V_{IH}$; device is continuously selected. Note i: Measured \pm 200mV from steady state output voltage.

SRAM READ CYCLE #1: Address Controlled $^{g,\ h}$

SRAM READ CYCLE #2: E Controlled9


SRAM WRITE CYCLES #1 & #2

 $(V_{CC} = 5.0V \pm 10\%)^{e}$


5	;	SYMBOLS		DADAMETER	STK14	C88-25	STK14C88-35		STK14C88-45		LINUTO
NO.	#1	#2	Alt.	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
12	t _{AVAV}	t _{AVAV}	t _{WC}	Write Cycle Time	25		35		45		ns
13	t _{WLWH}	t _{WLEH}	t _{WP}	Write Pulse Width	20		25		30		ns
14	t _{ELWH}	t _{ELEH}	t _{CW}	Chip Enable to End of Write	20		25		30		ns
15	t _{DVWH}	t _{DVEH}	t _{DW}	Data Set-up to End of Write	10		12		15		ns
16	t _{WHDX}	t _{EHDX}	t _{DH}	Data Hold after End of Write	0		0		0		ns
17	t _{AVWH}	t _{AVEH}	t _{AW}	Address Set-up to End of Write	20		25		30		ns
18	t _{AVWL}	t _{AVEL}	t _{AS}	Address Set-up to Start of Write	0		0		0		ns
19	t _{WHAX}	t _{EHAX}	t _{WR}	Address Hold after End of Write	0		0		0		ns
20	t _{WLQZ} i, j		t _{WZ}	Write Enable to Output Disable		10		13		15	ns
21	t _{WHQX}		t _{OW}	Output Active after End of Write	5		5		5		ns

 $\label{eq:normalized_normalized_normalized} \begin{array}{ll} \mbox{Note j:} & \mbox{If \overline{W} is low when \overline{E} goes low, the outputs remain in the high-impedance state.} \\ \mbox{Note i:} & \mbox{\overline{E} or \overline{W} must be $\geq V_{lH}$ during address transitions.} \\ \mbox{Note i:} & \mbox{HSB} \mbox{must be high during SRAM WRITE cycles.} \end{array}$

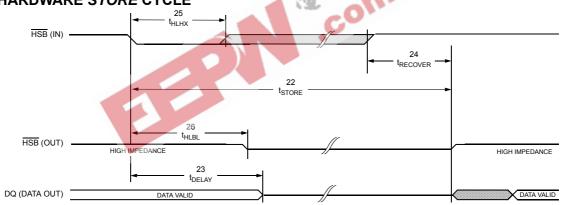
SRAM WRITE CYCLE #1: W Controlled^{k, I}

SRAM WRITE CYCLE #2: \overline{E} Controlled^{k, I}

HARDWARE MODE SELECTION

Ē	w	HSB	A ₁₃ - A ₀ (hex)	MODE	I/O	POWER	NOTES
Н	Х	Н	X	Not Selected	Output High Z	Standby	
L	Н	Н	Х	Read SRAM	Output Data	Active	t
L	L	Н	Х	Write SRAM	Input Data	Active	
Х	Х	L	Х	Nonvolatile STORE	Output High Z	I _{CC2}	m

Note m: HSB STORE operation occurs only if an SRAM WRITE has been done since the last nonvolatile cycle. After the STORE (if any) completes, the part will go into standby mode, inhibiting all operations until HSB rises.


HARDWARE STORE CYCLE

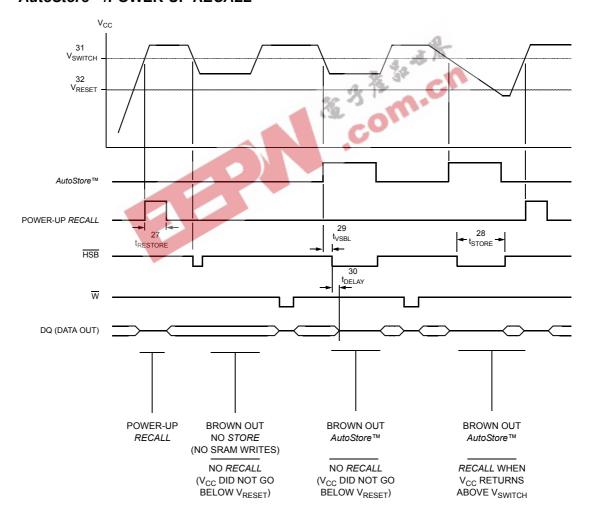
 $(V_{CC} = 5.0V \pm 10\%)^{e}$

NO.	SYMBOLS		PARAMETER	STK1	4C88	UNITS	NOTES
NO.	Standard Alternate		PARAMETER	MIN	MAX	UNITS	NOTES
22	t _{STORE}	t _{HLHZ}	STORE Cycle Duration		10	ms	i, n
23	t _{DELAY}	t _{HLQZ}	Time Allowed to Complete SRAM Cycle	1		μs	i, n
24	t _{RECOVER}	t _{HHQX}	Hardware STORE High to Inhibit Off		700	ns	n, o
25	t _{HLHX}		Hardware STORE Pulse Width	15		ns	
26	t _{HLBL}		Hardware STORE Low to STORE Busy		300	ns	

 $\begin{array}{ll} \text{Note n:} & \overline{E} \text{ and } \overline{G} \text{ low and } \overline{W} \text{ high for output behavior.} \\ \text{Note o:} & t_{\text{RECOVER}} \text{ is only applicable after } t_{\text{STORE}} \text{ is complete.} \end{array}$

HARDWARE STORE CYCLE

AutoStore™/POWER-UP RECALL


 $(V_{CC} = 5.0V \pm 10\%)^{e}$

NO.	SYMBOLS		PARAMETER		14C88	UNITS	NOTES
NO.	Standard	Alternate	PARAMETER	MIN	MAX	UNIIS	NOTES
27	t _{RESTORE}		Power-up RECALL Duration		550	μs	р
28	t _{STORE}	t _{HLHZ}	STORE Cycle Duration		10	ms	n, q
29	t _{VSBL}		Low Voltage Trigger (V _{SWITCH}) to HSB Low		300	ns	- 1
30	t _{DELAY}	t _{BLQZ}	Time Allowed to Complete SRAM Cycle	1		μs	n
31	V _{SWITCH}		Low Voltage Trigger Level	4.0	4.5	V	
32	V _{RESET}		Low Voltage Reset Level		3.6	V	

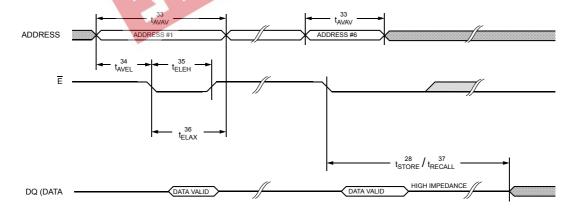
Note p:

 $t_{RESTORE}$ starts from the time V_{CC} rises above V_{SWITCH} . HSB is asserted low for 1 μ s when V_{CAP} drops through V_{SWITCH} . If an SRAM WRITE has not taken place since the last nonvolatile cycle, HSB will be released and no *STORE* will take place. Note q:

AutoStore™/POWER-UP RECALL

SOFTWARE STORE/RECALL MODE SELECTION

Ē	w	A ₁₃ - A ₀ (hex)	MODE	1/0	POWER	NOTES
L	н	0E38 31C7 03E0 3C1F 303F 0FC0	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile <i>STORE</i>	Output Data Output Data Output Data Output Data Output Data Output High Z	Active	r, s, t
L	н	0E38 31C7 03E0 3C1F 303F 0C63	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile <i>RECALL</i>	Output Data Output Data Output Data Output Data Output Data Output High Z	Active	r, s, t


SOFTWARE-CONTROLLED STORE/RECALL CYCLEV

 $(V_{CC} = 5.0V \pm 10\%)^{e}$

No	SYME	OLS	PARAMETER	STK14	C88-25	STK14	C88-35	STK14	C88-45	шито	NOTEO
NO.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
33	t _{AVAV}	t _{RC}	STORE/RECALL Initiation Cycle Time			35	-	45		ns	n
34	t _{AVEL}	t _{AS}	Address Set-up Time	0	3.	0		0		ns	u
35	t _{ELEH}	t _{CW}	Clock Pulse Width	20	34	25	10	30		ns	u
36	t _{ELAX}		Address Hold Time	20		20		20		ns	u
37	t _{RECALL}		RECALL Duration		20		20		20	μs	

- Note r: The six consecutive addresses must be in the order listed. \overline{W} must be high during all six consecutive cycles to enable a nonvolatile cycle. Note s: While there are 15 addresses on the STK14C88, only the lower 14 are used to control software modes. Note t: I/O state assumes $\overline{G} \le V_{IL}$. Activation of nonvolatile cycles does not depend on state of \overline{G} . The software sequence is clocked with \overline{E} controlled READs. Note v: The six consecutive addresses must be in the order listed in the Hardware Mode Selection Table: (0E38, 31C7, 03E0, 3C1F, 303F, 0FC0) for a STORE cycle or (0E38, 31C7, 03E0, 3C1F, 303F, 0C63) for a RECALL cycle. \overline{W} must be high during all six consecutive cycles.

SOFTWARE STORE/RECALL CYCLE: E CONTROLLED

DEVICE OPERATION

The STK14C88 has two separate modes of operation: SRAM mode and nonvolatile mode. In SRAM mode, the memory operates as a standard fast static RAM. In nonvolatile mode, data is transferred from SRAM to nonvolatile elements (the *STORE* operation) or from nonvolatile elements to SRAM (the *RECALL* operation). In this mode SRAM functions are disabled.

NOISE CONSIDERATIONS

The STK14C88 is a high-speed memory and so must have a high-frequency bypass capacitor of approximately $0.1\mu F$ connected between V_{CAP} and $V_{\text{SS}},$ using leads and traces that are as short as possible. As with all high-speed CMOS ICs, normal careful routing of power, ground and signals will help prevent noise problems.

SRAM READ

The STK14C88 performs a READ cycle whenever \overline{E} and \overline{G} are low and \overline{W} and \overline{HSB} are high. The address specified on pins A_{0-14} determines which of the 32,768 data bytes will be accessed. When the READ is initiated by an address transition, the outputs will be valid after a delay of t_{AVQV} (READ cycle #1). If the READ is initiated by \overline{E} or \overline{G} , the outputs will be valid at t_{ELQV} or at t_{GLQV} , whichever is later (READ cycle #2). The data outputs will repeatedly respond to address changes within the t_{AVQV} access time without the need for transitions on any control input pins, and will remain valid until another address change or until \overline{E} or \overline{G} is brought high, or \overline{W} or \overline{HSB} is brought low.

SRAM WRITE

A WRITE cycle is performed whenever \overline{E} and \overline{W} are low and \overline{HSB} is high. The address inputs must be stable prior to entering the WRITE cycle and must remain stable until either \overline{E} or \overline{W} goes high at the end of the cycle. The data on the common I/O pins DQ₀₋₇ will be written into the memory if it is valid t_{DVWH} before the end of a \overline{W} controlled WRITE or t_{DVEH} before the end of an \overline{E} controlled WRITE.

It is recommended that \overline{G} be kept high during the entire WRITE cycle to avoid data bus contention on common I/O lines. If \overline{G} is left low, internal circuitry will turn off the output buffers t_{WIOZ} after \overline{W} goes low.

POWER-UP RECALL

During power up, or after any low-power condition ($V_{CAP} < V_{RESET}$), an internal *RECALL* request will be latched. When V_{CAP} once again exceeds the sense voltage of V_{SWITCH} , a *RECALL* cycle will automatically be initiated and will take $t_{RESTORE}$ to complete.

If the STK14C88 is in a WRITE state at the end of power-up *RECALL*, the SRAM data will be corrupted. To help avoid this situation, a 10K Ohm resistor should be connected either between \overline{W} and system V_{CC} or between \overline{E} and system V_{CC} .

SOFTWARE NONVOLATILE STORE

The STK14C88 software STORE cycle is initiated by executing sequential E controlled READ cycles from six specific address locations. During the STORE cycle an erase of the previous nonvolatile data is first performed, followed by a program of the nonvolatile elements. The program operation copies the SRAM data into nonvolatile memory. Once a STORE cycle is initiated, further input and output are disabled until the cycle is completed.

Because a sequence of READs from specific addresses is used for *STORE* initiation, it is important that no other READ or WRITE accesses intervene in the sequence, or the sequence will be aborted and no *STORE* or *RECALL* will take place.

To initiate the software *STORE* cycle, the following READ sequence must be performed:

1.	Read address	0E38 (hex)	Valid READ
2.	Read address	31C7 (hex)	Valid READ
3.	Read address	03E0 (hex)	Valid READ
4.	Read address	3C1F (hex)	Valid READ
5.	Read address	303F (hex)	Valid READ
6.	Read address	0FC0 (hex)	Initiate STORE cycle

The software sequence must be clocked with $\overline{\overline{E}}$ controlled READs

Once the sixth address in the sequence has been entered, the *STORE* cycle will commence and the chip will be disabled. It is important that READ cycles and not WRITE cycles be used in the sequence, although it is not necessary that \overline{G} be low for the sequence to be valid. After the t_{STORE} cycle time has been fulfilled, the SRAM will again be activated for READ and WRITE operation.

SOFTWARE NONVOLATILE RECALL

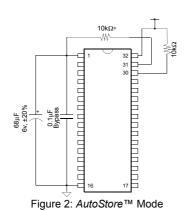
A software RECALL cycle is initiated with a sequence of READ operations in a manner similar to the software STORE initiation. To initiate the RECALL cycle, the following sequence of E controlled READ operations must be performed:

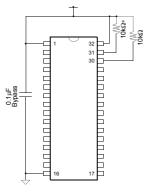
1.	Read address	0E38 (hex)	Valid READ
2.	Read address	31C7 (hex)	Valid READ
3.	Read address	03E0 (hex)	Valid READ
4.	Read address	3C1F (hex)	Valid READ
5.	Read address	303F (hex)	Valid READ
6.	Read address	0C63 (hex)	Initiate RECALL cycle

Internally, RECALL is a two-step procedure. First, the SRAM data is cleared, and second, the nonvolatile information is transferred into the SRAM cells. After the $t_{\mbox{\tiny RECALL}}$ cycle time the SRAM will once again be ready for READ and WRITE operations. The RECALL operation in no way alters the data in the nonvolatile elements. The nonvolatile data can be recalled an unlimited number of times.

AutoStore™ OPERATION

The STK14C88 can be powered in one of three modes.


During normal *AutoStore*™ operation. STK14C88 will draw current from V_{ccx} to charge a capacitor connected to the V_{CAP} pin. This stored charge will be used by the chip to perform a single STORE operation. After power up, when the voltage on the V_{CAP} pin drops below V_{SWITCH}, the part will automatically disconnect the V_{CAP} pin from V_{CCX} and initiate a STORE operation.


Figure 2 shows the proper connection of capacitors for automatic store operation. A charge storage capacitor having a capacity of between 68µF and $220\mu F$ (± 20%) rated at 6V should be provided.

In system power mode (Figure 3), both V_{ccx} and V_{CAP} are connected to the + 5V power supply without the 68µF capacitor. In this mode the AutoStore™ function of the STK14C88 will operate on the stored system charge as power goes down. The user must, however, guarantee that V_{CCX} does not drop below 3.6V during the 10ms STORE cycle.

If an automatic STORE on power loss is not required, then V_{ccx} can be tied to ground and + 5V applied to V_{CAP} (Figure 4). This is the *AutoStore*™ Inhibit mode, in which the $AutoStore^{TM}$ function is disabled. If the STK14C88 is operated in this configuration, references to $V_{\text{\tiny CCX}}$ should be changed to $V_{\text{\tiny CAP}}$ throughout this data sheet. In this mode, STORE operations may be triggered through software control or the HSB pin. It is not permissable to change between these three options "on the fly".

In order to prevent unneeded STORE operations, automatic STOREs as well as those initiated by externally driving HSB low will be ignored unless at least one WRITE operation has taken place since the most recent STORE or RECALL cycle. Softwareinitiated STORE cycles are performed regardless of whether a WRITE operation has taken place. An optional pull-up resistor is shown connected to HSB. This can be used to signal the system that the AutoStore™ cycle is in progress.

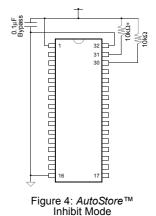


Figure 3: System Power Mode

If the power supply drops faster than 20 μs /volt before V_{CCX} reaches V_{SWITCH} , then a 2.2 ohm resistor should be inserted between V_{CCX} and the system supply to avoid momentary excess of current between V_{CCX} and V_{CCX} an

HSB OPERATION

The STK14C88 provides the HSB pin for controlling and acknowledging the *STORE* operations. The HSB pin can be used to request a hardware *STORE* cycle. When the HSB pin is driven low, the STK14C88 will conditionally initiate a *STORE* operation after to the SRAM took place since the last *STORE* or *RECALL* cycle. The HSB pin also acts as an open drain driver that is internally driven low to indicate a busy condition while the *STORE* (initiated by any means) is in progress.

SRAM READ and WRITE operations that are in progress when HSB is driven low by any means are given time to complete before the *STORE* operation is initiated. After HSB goes low, the STK14C88 will continue SRAM operations for t_{DELAY}. During t_{DELAY} multiple SRAM READ operations may take place. If a WRITE is in progress when HSB is pulled low it will be allowed a time, t_{DELAY}, to complete. However, any SRAM WRITE cycles requested after HSB goes low will be inhibited until HSB returns high.

The $\overline{\text{HSB}}$ pin can be used to synchronize multiple STK14C88s while using a single larger capacitor. To operate in this mode the $\overline{\text{HSB}}$ pin should be connected together to the $\overline{\text{HSB}}$ pins from the other STK14C88s. An external pull-up resistor to + 5V is required since $\overline{\text{HSB}}$ acts as an open drain pull down. The V_{CAP} pins from the other STK14C88 parts can be tied together and share a single capacitor. The capacitor size must be scaled by the number of devices connected to it. When any one of the STK14C88s detects a power loss and asserts $\overline{\text{HSB}}$, the common $\overline{\text{HSB}}$ pin will cause all parts to request a *STORE* cycle (a *STORE* will take place in those STK14C88s that have been written since the last nonvolatile cycle).

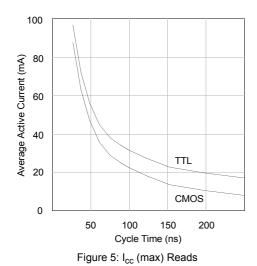
During any STORE operation, regardless of how it was initiated, the STK14C88 will continue to drive the HSB pin low, releasing it only when the STORE is complete. Upon completion of the STORE operation the STK14C88 will remain disabled until the HSB

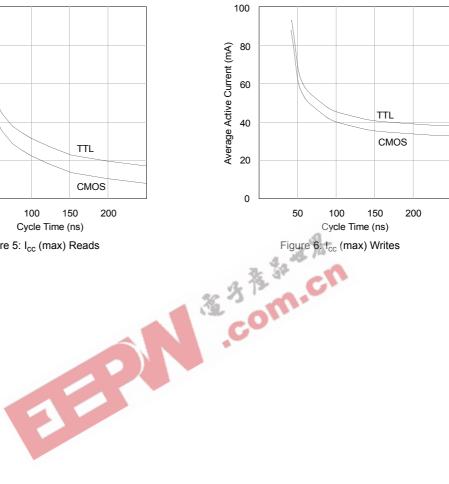
pin returns high.

If HSB is not used, it should be left unconnected.

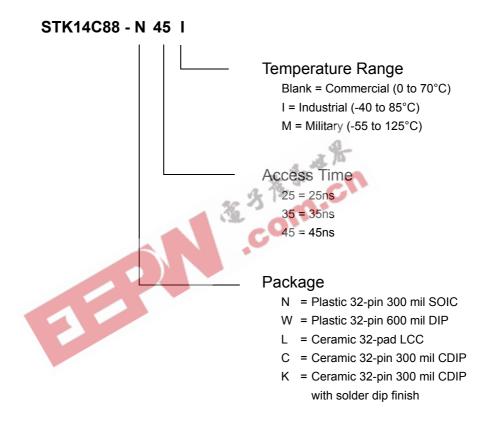
PREVENTING STORES

The STORE function can be disabled on the fly by holding \overline{HSB} high with a driver capable of sourcing 30mA at a V_{OH} of at least 2.2V, as it will have to overpower the internal pull-down device that drives \overline{HSB} low for 20 μ s at the onset of a STORE. When the STK14C88 is connected for $AutoStore^{TM}$ operation (system V_{CC} connected to V_{CCX} and a 68 μ F capacitor on V_{CAP}) and V_{CC} crosses V_{SWITCH} on the way down, the STK14C88 will attempt to pull \overline{HSB} low; if \overline{HSB} doesn't actually get below V_{IL} , the part will stop trying to pull \overline{HSB} low and abort the STORE attempt.


HARDWARE PROTECT


The STK14C88 offers hardware protection against inadvertent *STORE* operation and SRAM WRITES during low-voltage conditions. When $V_{CAP} < V_{SWITCH}$, all externally initiated *STORE* operations and SRAM WRITES will be inhibited.

AutoStore[™] can be completely disabled by tying V_{CCX} to ground and applying + 5V to V_{CAP} . This is the AutoStore[™] Inhibit mode; in this mode STOREs are only initiated by explicit request using either the software sequence or the HSB pin.


LOW AVERAGE ACTIVE POWER

The STK14C88 draws significantly less current when it is cycled at times longer than 50ns. Figure 5 shows the relationship between $I_{\rm CC}$ and READ cycle time. Worst-case current consumption is shown for both CMOS and TTL input levels (commercial temperature range, $V_{\rm CC}$ = 5.5V, 100% duty cycle on chip enable). Figure 6 shows the same relationship for WRITE cycles. If the chip enable duty cycle is less than 100%, only standby current is drawn when the chip is disabled. The overall average current drawn by the STK14C88 depends on the following items: 1) CMOS vs. TTL input levels; 2) the duty cycle of chip enable; 3) the overall cycle rate for accesses; 4) the ratio of READs to WRITEs; 5) the operating temperature; 6) the $V_{\rm CC}$ level; and 7) I/O loading.

ORDERING INFORMATION

Document Revision History

Revision	Date	Summary
0.0	December 2002	Removed 20 nsec device; Combined commercial, industrial and military; current limit resistor added for extreme power-off slew rate.

