

128K x 8 Static RAM

Features

- High Speed
 - -55ns and 70ns availability
- · Voltage range
 - -- 2.7V-3.6V
- Ultra low active power
 - Typical active current: 20 mA @ f = f_{max} (70ns speed)
- · Low standby power
- Easy memory expansion with CE and OE features
- · Automatic power-down when deselected
- · CMOS for optimum speed/power

Functional Description

The WCMA1008U1X is a high-performance CMOS static RAM organized as 128K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (\overline{CE}_1), an active HIGH Chip Enable (\overline{CE}_2), an active LOW Output Enable (\overline{OE}) and three-state drivers. These devices have an automat-

ic power-down feature, reducing the power consumption by over 99% when deselected.

Writing to the device is accomplished by taking Chip Enable one (CE₁) and Write Enable (WE) inputs LOW and the Chip Enable two (CE₂) input HIGH. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₆).

Reading from the device is accomplished by taking Chip Enable one ($\overline{\text{CE}}_1$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable ($\overline{\text{WE}}$) and Chip Enable two ($\overline{\text{CE}}_2$) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH, and \overline{WE} LOW).

The WCMA1008U1X is available in a 32 Lead TSOP and STSOP packages.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage to Ground Potential..... -0.5V to +4.6V

DC Voltage Applied to Outputs in High Z State ^[1]	0.5V to V _{CC} + 0.5V
DC Input Voltage ^[1]	
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Product	Range	Ambient Temperature	V _{cc}
WCMA1008U1X	Industrial	-40°C to +85°C	2.7V to 3.6V

Product Portfolio

					Power Dissipat	ion (Industr	ial)
Product	V _{CC} Range		Spood	Operating, I _{CC}	Standb	y (I _{SB2})	
Product				Speed	f = f _{max}	Typ. ^[2]	Max.
	Min.	Typ. ^[2]	Max.		Typ. ^[2] Max.	тур	IVIAX.
WCMA1008U1X	2.7V	3.0V	3.6V	70 ns 55 ns	20 mA 40 m A	0.4 μΑ	30 μΑ

- V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Electrical Characteristics Over the Operating Range

					WCMA	A1008U1X	(-70/55	
Parameter	Description	Test Conditions				Typ . ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.7V		2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$				0.4	V
V _{IH}	Input HIGH Voltage				2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage				-0.5		0.8	V
I _{IX}	Input Leakage Cur- rent	$GND \le V_1 \le V_{CC}$			-1		+1	μΑ
I _{OZ}	Output Leakage Cur- rent	$GND \le V_O \le V_{CC}$, Output Disabled			-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	V _{CC} = 3.6V	70ns		20	40	mA
	Current		I _{OUT} = 0 mA CMOS Levels	55ns		23	50	
I _{SB1}	Automatic CE	Max. V _{CC} , \overline{CE}_1 ≥V _{IH} ,		70ns _ 4		15	300	μΑ
	Power-Down Cur- rent— TTL Inputs		23	55ns		17	350	
I _{SB2}	Automatic CE Power-Down Cur- rent— CMOS Inputs		$\begin{array}{c c} \text{Max. } V_{\text{CC}}, \overline{\text{CE}}_1 \geq V_{\text{CC}} - 0.3 \text{V,CE}_2 < 0.3 \\ V_{\text{IN}} \geq V_{\text{CC}} - 0.3 \text{V or } V_{\text{IN}} \leq 0.3 \text{V, f} = 0 \end{array}$			0.4	30	

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = Vcc_{(typ)}$	6	pF
C _{OUT}	Output Capacitance		8	pF

Thermal Resistance

Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance ^[3] (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	$\Theta_{ m JA}$	55	°C/W
Thermal Resistance ^[3] (Junction to Case)		$\Theta_{ m JC}$	16	°C/W

Note:

3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENINEQUIVALENT

Parameters	3.3V	Unit
R1	1213	Ohms
R2	1378	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.6			V
I _{CCDR}	Data Retention Current	$V_{CC} = 2V, \overline{CE}_1 \ge V_{CC} - 0.3V, \ CE_2 < 0.3V \ V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$		0.4	20	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R ^[4]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform

^{4.} Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100 \, \mu s$ or stable at $V_{CC(min.)} \ge 100 \, \mu s$.

Switching Characteristics Over the Operating Range^[5]

		WCMA10	08U1X-55	WCMA10	008U1X-70	
Parameter	Parameter Description		Max.	Min.	Max.	Unit
READ CYCLE			•	•	1	
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	5		10		ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		20		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	10		10		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		20		25	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[6]	10		10		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[6, 7]		20		25	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-Up	0	a	0		ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-Down		55		70	ns
WRITE CYCLE ^[8,]	·	7 3°	-10			
t _{WC}	Write Cycle Time	55	10.	70		ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	45		55		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	5		5		ns

^{5.} Test conditions assume signal transition time of 5 ns or less, timing reference levels of $V_{CC(typ.)}/2$, input pulse levels of 0 to $V_{CC(typ.)}$, and output loading of the

specified $|_{\text{OL}}/|_{\text{OH}}$ and 30 pF load capacitance.

At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZNE} , and t_{HZWE} for any given device. t_{HZCE} , t_{HZCE} , and t_{HZWE} transitions are measured when the outputs enter a high impedance state.

The internal write time of the memory is defined by the overlap of WE, $\overline{\text{CE}}_1 = V_{\text{IL}}$ and $\overline{\text{CE}}_2 = V_{\text{IH}}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled) $^{[9,\,10]}$

- 9. Device is continuously selected. OE, CE₁ = V_{IL}, CE₂ = V_{IH}.
 10. WE is HIGH for read cycle.
 11. Address valid prior to or coincident with CE₁ transition LOW and CE₂ transition HIGH.

Switching Waveforms (continued)

Write Cycle No. 1(WE Controlled) [8, 12, 14]

Write Cycle No. 2 (CE₁ or CE₂ Controlled) [8, 12, 14]

- Data I/O is high impedance if OE = V_{IH}.
 During this period, the I/Os are in output state and input signals should not be applied.
 If CE₁ goes HIGH and CE₂ goes LOW simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW) [14]

Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Н	L	Data Out	Read	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Output Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMA1008U1X-TF70	T32	32-Lead TSOP	Industrial
	WCMA1008U1X-SF70	S32	32-Lead STSOP	
55	WCMA1008U1X-TF55	T32	32-Lead TSOP	
	WCMA1008U1X-SF55	S32	32-Lead STSOP	

Package Diagrams

32-Lead Thin Small Outline Package, T32

Package Diagrams (continued)

32-Lead Shrunk Thin Small Outline Package, S32

Document Title: WCMA1008U1X, 128K x 8 Static RAM								
REV.	Spec #	ECN#	Issue Date	Orig. of Change	Description of Change			
**	38-14023	115246	4/24/2002	MGN	New Data Sheet			

