

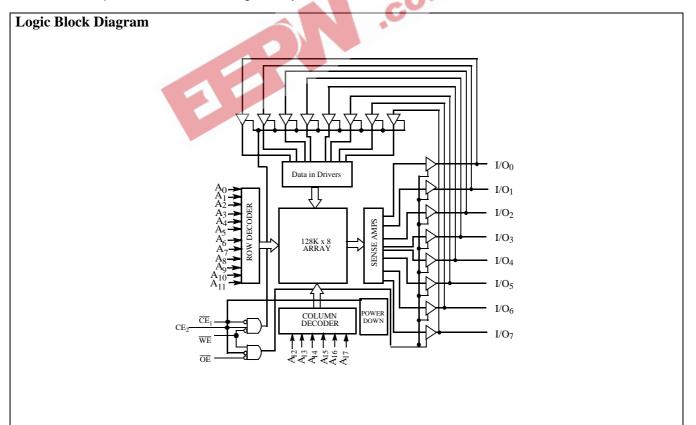
Features

- High Speed
- 70ns availability
- Voltage range
- —2.7V–3.6V
- Ultra low active power
- Typical active current: 1 mA @ f = 1MHz
- Typical active current: 7 mA @ f = f_{max} (70ns speed)
- · Low standby power
- Easy memory expansion with CE₁,CE₂,and OE features
- Automatic power-down when deselected
- CMOS for optimum speed/power

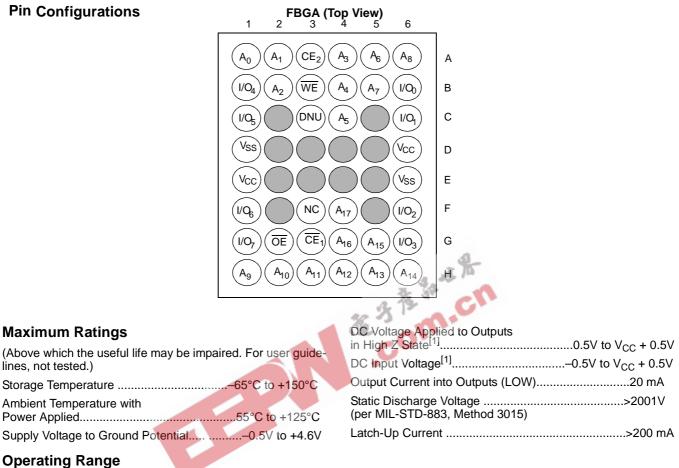
Functional Description

The WCMA2008U1X is a high-performance CMOS static RAM organized as 256K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is device is ideal for portable applications. The device also has an automatic power-down feature that significantly reduc-

256K x 8 Static RAM


es power consumption by 80% when addresses are not toggling. The device can be put into standby mode reducing <u>pow</u>er consumption by more than 99% when deselected (\overline{CE}_1 HIGH or CE_2 LOW).

<u>Writing</u> to the device is accomplished by taking Chip Enable (\overline{CE}_1) and Write Enable (WE) inputs LOW and Chip Enable 2 (CE₂) HIGH. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₇).


Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}_1}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) and Chip Enable 2 (CE₂) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or CE_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW and CE_2 HIGH and WE LOW).

The WCMA2008U1X is available in a 36-ball FBGA package.

Product	Range	Ambient Temperature	V _{cc}
WCMA2008U1X	Industrial	–40°C to +85°C	2.7V to 3.6V

Product Portfolio

						Powe	r Dissipat	ion (Indus	strial)	
Product	V _{CC} Range			Speed	Operating, I _{CC}					
Product				Speed	f = 1 MHz		f = f _{max}		Standby (I _{SB2})	
	Min.	Typ. ^[2]	Max.		Typ. ^[2]	Max.	Typ. ^[2]	Max.	Typ. ^[2]	Max.
WCMA2008U1X	2.7V	3.0V	3.6V	70 ns	1 mA	2 mA	7 mA	15 mA	1 μΑ	30 µA

Notes:

 V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C. 2.

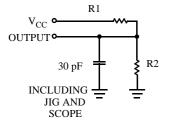
Electrical Characteristics Over the Operating Range

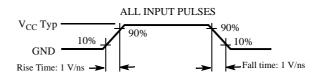
				WC	MA2008U1	X-70	
Param- eter	Description	Test Co	nditions	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	$V_{CC} = 2.7V$	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.5V	V
V _{IL}	Input LOW Voltage			-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$		-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$	Output Disabled	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.6V$		7	15	mA
	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1	2	
I _{SB1}	Automatic CE Power-Down Current— TTL Inputs	$\begin{array}{l} \text{Max. } V_{\text{CC}}, \ \overline{\text{CE}}_{1} \geq V \\ V_{\text{IN}} \geq V_{\text{IH}} \text{ or} \\ V_{\text{IN}} \leq V_{\text{IL}}, \ f = f_{\text{MAX}} \end{array}$			e a	100	μA
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	Max. V _{CC} , CE ₁ ≥ V CE ₂ < 0.3V V _{IN} ≥ V _{CC} − 0.3V	$V_{\rm CC} - 0.3V$, or $V_{\rm IN} \le 0.3V$, f = 0	72 St	c M	15	

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{CC} = Vcc_{(typ)}$	6	pF
C _{OUT}	Output Capacitance		8	pF

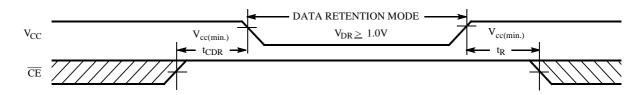
Thermal Resistance


Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance ^[3] (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance ^[3] (Junction to Case)		$\Theta_{ m JC}$	16	°C/W


 Note:

 3.
 Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms


Equivalent to: THÉVENINEQUIVALENT

Parameters	3.3V	Unit
R1	1105	Ohms
R2	1550 🛛 👷 🐼	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention		1.0		3.6	V
I _{CCDR}	Data Retention Current	$\label{eq:V_CC} \begin{split} &V_{CC} = 1.0 \text{V}, \ \overline{CE}_1 \geq V_{CC} - 0.3 \text{V}, \\ &CE_2 < 0.3 \text{V} \\ &V_{\text{IN}} \geq V_{CC} - 0.3 \text{V} \text{ or } V_{\text{IN}} \leq 0.3 \text{V} \end{split}$		0.1	5	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R ^[4]	Operation Recovery Time		100			ns

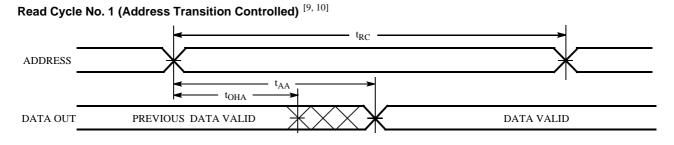
Data Retention Waveform

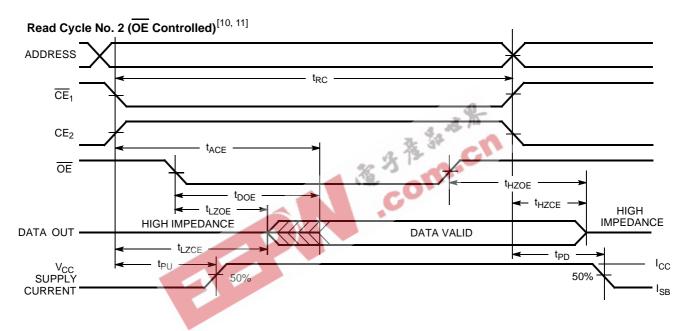
Note:

4. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100 \,\mu s$ or stable at $V_{CC(min.)} \ge 100 \,\mu s$.

Switching Characteristics Over the Operating Range^[5]

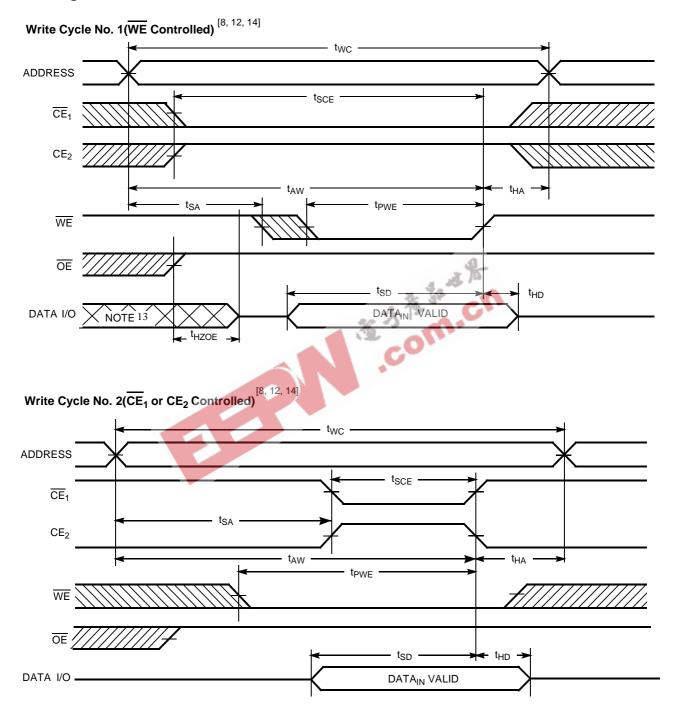
		WCMA200	08U1X-70	
Parameter	Description	Min.	Max.	Unit
READ CYCLE	· · · ·			
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns
t _{LZCE}	\overline{CE}_1 LOW and CE_2 HIGH to Low $Z^{[6]}$	10		ns
t _{HZCE}	\overline{CE}_1 HIGH or CE_2 LOW to High $Z^{[6, 7]}$		25	ns
t _{PU}	\overline{CE}_1 LOW and CE_2 HIGH to Power-Up	0		ns
t _{PD}	\overline{CE}_1 HIGH or CE_2 LOW to Power-Down	A AT	70	ns
WRITE CYCLE ^[8,]		k 34		
t _{WC}	Write Cycle Time 👷 🏂	70		ns
t _{SCE}	\overline{CE}_1 LOW and CE_2 HIGH to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns


Notes:


5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading

s. rest conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.
6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZWE} for any given device.
7. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outp<u>uts enter</u> a high impedance state.
8. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

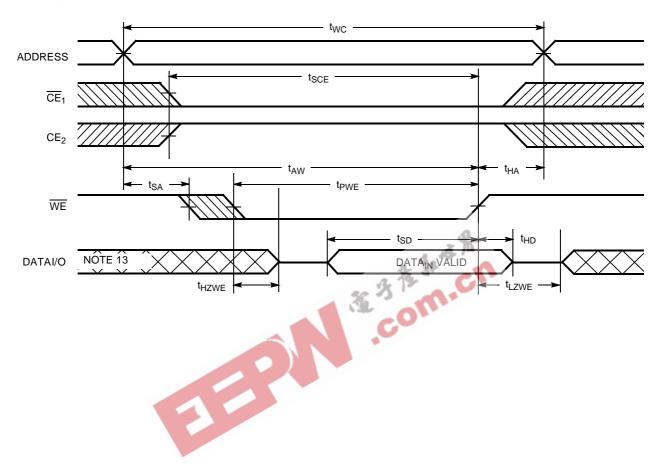
Switching Waveforms



Notes:

- 9.
- $\begin{array}{l} \hline \underline{\text{Device}} \text{ is continuously selected. } \overline{\text{OE}}, \ \overline{\text{CE}}_1 = \text{V}_{\text{IL}}, \ \text{CE}_2 = \text{V}_{\text{IH}}. \\ \hline \overline{\text{WE}} \text{ is HIGH for read cycle.} \\ \hline \text{Address valid prior to or coincident with } \overline{\text{CE}} \text{ transition LOW}. \end{array}$ 10. 11.

Switching Waveforms (continued)



Notes:

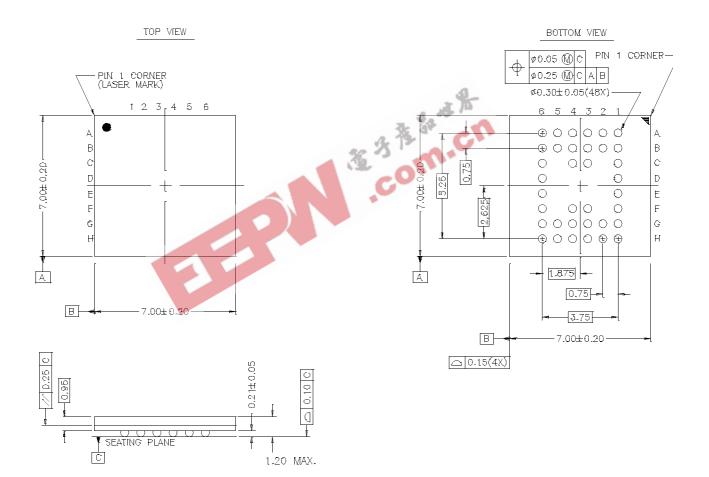
- Data I/O is high impedance if OE = V_{IH}.
 D<u>uring</u> this period, the I/Os are in output state and input signals should not be applied.
 If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[14]

Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Н	L	Data Out	Read	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Output Disabled	Active (I _{CC})



Ordering Information

	Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
ĺ	70	WCMA2008U1X-FF70	FA36A	36-ball Fine Pitch BGA	Industrial

Package Diagrams

36-ball (7.0 mm x 7.0 mm x 1.2 mm) Fine Pitch BGA, FA36A

Document Title: WCMA2008U1X, 256K x 8 Static RAM

REV.	Spec #	ECN #	Issue Date	Orig. of Change	Description of Change
**	38-14021	115240	3/18/2002	MGN	New Data Sheet

