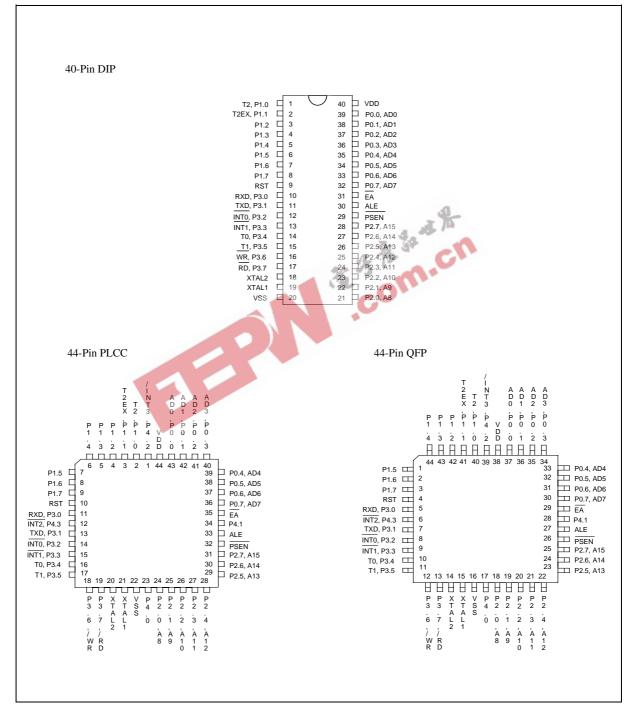


Table of Contents-

1.	GENERAL DESCRIPTION	2
2.	FEATURES	2
3.	PIN CONFIGURATIONS	3
4.	PIN DESCRIPTION	4
5.	FUNCTIONAL DESCRIPTION	5
6.	SECURITY	. 17
7.	ABSOLUTE MAXIMUM RATINGs	. 18
8.	DC CHARACtERISTICS	
9.	AC CHARACTERISTICS	. 21
10.	TIMING WAVEFORMS	. 23
11.	TIMING WAVEFORMS	. 25
	11.1 Expanded External Data Memory and Oscillator	. 26
12.	PACKAGE DIMENSIONS	. 27
13.	REVISION HISTORY	. 34

1. GENERAL DESCRIPTION

The W78L058A is an 8-bit microcontroller which has an in-system programmable Flash EPROM for firmware updating. The instruction set of the W78L058A is fully compatible with the standard 8052. The W78L058A contains a 32K bytes of main ROM and a 4K bytes of auxiliary ROM which allows the contents of the 32KB main ROM to be updated by the loader program located at the 4KB auxiliary ROM; 512 bytes of on-chip RAM; four 8-bit bi-directional and bit-addressable I/O ports; an additional 4-bit port P4; three 16-bit timer/counters; a serial port. These peripherals are supported by a eight sources two-level interrupt capability. To facilitate programming and verification, the ROM inside the W78L058A allows the program memory to be programmed and read electronically. Once the code is confirmed, the user can protect the code for security.


The W78L058A microcontroller has two power reduction modes, idle mode and power-down mode, both of which are software selectable. The idle mode turns off the processor clock but allows for continued peripheral operation. The power-down mode stops the crystal oscillator for minimum power M for consumption. The external clock can be stopped at any time and in any state without affecting the processor.

2. FEATURES

- Fully static design 8-bit CMOS microcontroller
- 32K bytes of in-system programmable Flash EPROM for Application Program (APROM)
- 4K bytes of auxiliary ROM for Loader Program (LDROM)
- 512 bytes of on-chip RAM. (including 256 bytes of AUX-RAM, software selectable)
- 64K bytes program memory address space and 64K bytes data memory address space
- Four 8-bit bi-directional ports
- One 4-bit multipurpose programmable port
- Three 16-bit timer/counters
- One full duplex serial port
- Eight-sources, two-level interrupt capability
- Built-in power management
- Code protection
- Packaged in
 - Lead Free (RoHS) DIP 40: W78L058A24DL
 - Lead Free (RoHS) PLCC 44: W78L058A24PL
 - Lead Free (RoHS) PQFP 44: W78L058A24FL

winbond

3. PIN CONFIGURATIONS

4. PIN DESCRIPTION

SYMBOL	TYPE	DESCRIPTIONS
ĒĀ	Ι	EXTERNAL ACCESS ENABLE: This pin forces the processor to execute the external ROM. The ROM address and data will not be presented on the bus if the \overline{EA} pin is high.
PSEN	ОН	PROGRAM STORE ENABLE: $\overrightarrow{\text{PSEN}}$ enables the external ROM data in the Port 0 address/data bus. When internal ROM access is performed, no $\overrightarrow{\text{PSEN}}$ strobe signal outputs originate from this pin.
ALE	ОН	ADDRESS LATCH ENABLE: ALE is used to enable the address latch that separates the address from the data on Port 0. ALE runs at 1/6th of the oscillator frequency.
RST	ΙL	RESET: A high on this pin for two machine cycles while the oscillator is running resets the device.
XTAL1	Ι	CRYSTAL 1: This is the crystal oscillator input. This pin may be driven by an external clock.
XTAL2	0	CRYSTAL 2: This is the crystal oscillator output. It is the inversion of XTAL1.
Vss	Ι	GROUND: ground potential.
Vdd	Ι	POWER SUPPLY: Supply voltage for operation.
P0.0-P0.7	I/O D	PORT 0: Function is the same as that of standard 8052.
P1.0-P1.7	I/O H	PORT 1: Function is the same as that of standard 8052.
P2.0-P2.7	I/O H	PORT 2: Port 2 is a bi-directional I/O port with internal pull-ups. This port also provides the upper address bits for accesses to external memory.
P3.0-P3.7	I/O H	PORT 3: Function is the same as that of the standard 8052.
P4.0-P4.3	I/O H	PORT 4: A bi-directional I/O. See details below.

F

* Note: TYPE I: input, O: output, I/O: bi-directional, H: pull-high, L: pull-low, D: open drain

5. FUNCTIONAL DESCRIPTION

The W78L058A architecture consists of a core controller surrounded by various registers, four general purpose I/O ports, one special purpose programmable 4-bits I/O port, 512 bytes of RAM, three timer/counters, a serial port. The processor supports 111 different opcodes and references both a 64K program address space and a 64K data storage space.

winbond

RAM

The internal data RAM in the W78L058A is 512 bytes. It is divided into two banks: 256 bytes of scratchpad RAM and 256 bytes of AUX-RAM. These RAMs are addressed by different ways.

- RAM 0H–7FH can be addressed directly and indirectly as the same as in 8051. Address pointers are R0 and R1 of the selected register bank.
- RAM 80H–FFH can only be addressed indirectly as the same as in 8051. Address pointers are R0, R1 of the selected registers bank.
- AUX-RAM 0H–FFH is addressed indirectly as the same way to access external data memory with the MOVX instruction. Address pointer are R0 and R1 of the selected register bank and DPTR register. An access to external data memory locations higher than FFH will be performed with the MOVX instruction in the same way as in the 8051. The AUX-RAM is disable after a reset. Setting the bit 4 in CHPCON register will enable the access to AUX-RAM. When AUX-RAM is enabled the instructions of "MOVX @Ri" will always access to on-chip AUX-RAM. When executing from internal program memory, an access to AUX-RAM will not affect the Ports P0, P2, WR and RD.

Example,

CHPENF	R REG F6H	
CHPCON	N REG BFH	
MOV	CHPENR,#87H	
MOV	CHPENR,#59H	
ORL	CHPCON,#00010000B	; enable AUX-RAM
MOV	CHPENR,#00H	
MOV	R0,#12H	
MOV	A,#34H	
MOVX	@R0,A	; Write 34h data to 12h address.

Timers 0, 1, and 2

Timers 0, 1, and 2 each consist of two 8-bit data registers. These are called TL0 and TH0 for Timer 0, TL1 and TH1 for Timer 1, and TL2 and TH2 for Timer 2. The TCON and TMOD registers provide control functions for timers 0, 1. The T2CON register provides control functions for Timer 2. RCAP2H and RCAP2L are used as reload/capture registers for Timer 2. The operations of Timer 0 and Timer 1 are the same as in the W78C51. Timer 2 is a 16-bit timer/counter that is configured and controlled by the T2CON register. Like Timers 0 and 1, Timer 2 can operate as either an external event counter or as an internal timer, depending on the setting of bit C/T2 in T2CON. Timer 2 has three operating modes: capture, auto-reload, and baud rate generator. The clock speed at capture or auto-reload mode is the same as that of Timers 0 and 1.

The set winbond

Clock

The W78L058A is designed with either a crystal oscillator or an external clock. Internally, the clock is divided by two before it is used by default. This makes the W78L058A relatively insensitive to duty cycle variations in the clock.

Crystal Oscillator

The W78L058A incorporates a built-in crystal oscillator. To make the oscillator work, a crystal must be connected across pins XTAL1 and XTAL2. In addition, a load capacitor must be connected from each pin to ground.

External Clock

An external clock should be connected to pin XTAL1. Pin XTAL2 should be left unconnected. The XTAL1 input is a CMOS-type input, as required by the crystal oscillator. 为礼部世界

Power Management

Idle Mode

Setting the IDL bit in the PCON register enters the idle mode. In the idle mode, the internal clock to the processor is stopped. The peripherals and the interrupt logic continue to be clocked. The processor will exit idle mode when either an interrupt or a reset occurs.

Power-down Mode

When the PD bit in the PCON register is set, the processor enters the power-down mode. In this mode all of the clocks are stopped, including the oscillator. To exit from power-down mode is by a hardware reset or external interrupts INTO to INT1 when enabled and set to level triggered.

Reduce EMI Emission

The W78L058A allows user to diminish the gain of on-chip oscillator amplifier by using programmer to clear the B7 bit of security register. Once B7 is set to 0, a half of gain will be decreased. Care must be taken if user attempts to diminish the gain of oscillator amplifier, reducing a half of gain may affect the external crystal operating improperly at high frequency. The value of C1 and C2 may need some adjustment while running at lower gain.

Reset

The external RESET signal is sampled at S5P2. To take effect, it must be held high for at least two machine cycles while the oscillator is running. An internal trigger circuit in the reset line is used to deglitch the reset line when the W78L058A is used with an external RC network. The reset logic also has a special glitch removal circuit that ignores glitches on the reset line. During reset, the ports are initialized to FFH, the stack pointer to 07H, PCON (with the exception of bit 4) to 00H, and all of the other SFR registers except SBUF to 00H. SBUF is not reset.

W78L058A Special Function Registers (SFRs) and Reset Values

								1	i i
F8									FF
F0	+B 00000000						CHPENR 00000000		F7
E8									EF
E0	+ACC 00000000								E7
D8	+P4 xxxx1111								DF
D0	+PSW 00000000								D7
C8	+T2CON 00000000		RCAP2L 00000000	RCAP2H 00000000	TL2 00000000	TH2 00000000			CF
C0	XICON 00000000		P4CONA 00000000	P4CONB 00000000	SFRAL 00000000	SFRAH 00000000	SFRFD 00000000	SFRCN 00000000	C7
B8	+IP 00000000				38 3	S. C		CHPCON 0xx00000	BF
B0	+P3 00000000				P43AL 00000000	P43AH 00000000			B7
A8	+IE 00000000				P42AL 00000000	P42AH 00000000	P2ECON 0000xx00		AF
A0	+P2 11111111								A7
98	+SCON 00000000	SBUF xxxxxxxx							9F
90	+P1 11111111				P41AL 00000000	P41AH 00000000			97
88	+TCON 00000000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000			8F
80	+P0 11111111	SP 00000111	DPL 00000000	DPH 00000000	P40AL 00000000	P40AH 00000000		PCON 00110000	87

Notes:

1. The SFRs marked with a plus sign(+) are both byte- and bit-addressable.

2. The text of SFR with bold type characters are extension function registers.

Port 4

Port 4, address D8H, is a 4-bit multipurpose programmable I/O port. Each bit can be configured individually by software. The Port 4 has four different operation modes.

Mode 0: P4.0–P4.3 is a bi-directional I/O port which is same as port 1. P4.2 and P4.3 also serve as external interrupt $\overrightarrow{\text{PSEN}}$ and $\overrightarrow{\text{INT2}}$ if enabled.

Mode 1: P4.0–P4.3 are read strobe signals that are synchronized with RD signal at specified addresses. These signals can be used as chip-select signals for external peripherals.

Mode 2: P4.0–P4.3 are write strobe signals that are synchronized with WR signal at specified addresses. These signals can be used as chip-select signals for external peripherals.

____ winbond **___**

Mode 3: P4.0–P4.3 are read/write strobe signals that are synchronized with RD or WR signal at specified addresses. These signals can be used as chip-select signals for external peripherals.

When Port 4 is configured with the feature of chip-select signals, the chip-select signal address range depends on the contents of the SFR P4xAH, P4xAL, P4CONA and P4CONB. The registers P4xAH and P4xAL contain the 16-bit base address of P4.x. The registers P4CONA and P4CONB contain the control bits to configure the Port 4 operation mode.

INT2/INT3

Two additional external interrupts, INT2 and INT3, whose functions are similar to those of external interrupt 0 and 1 in the standard 80C52. The functions/status of these interrupts are determined/shown by the bits in the XICON (External Interrupt Control) register. The XICON register is bit-addressable but is not a standard register in the standard 80C52. Its address is at 0C0H. To set/clear bits in the XICON register, one can use the "SETB (CLR) bit" instruction. For example, "SETB 0C2H" sets the EX2 bit of XICON.

XICON - external interrupt control (C0H)

PX3	EX3	IE3	IT3	PX2	EX2	IE2	IT2

PX3: External interrupt 3 priority high if set

EX3: External interrupt 3 enable if set

- IE3: If IT3 = 1, IE3 is set/cleared automatically by hardware when interrupt is detected/serviced IT3: External interrupt 3 is falling-edge/low-level triggered when this bit is set/cleared by software
- PX2: External interrupt 2 priority high if set

EX2: External interrupt 2 enable if set

IE2: If IT2 = 1, IE2 is set/cleared automatically by hardware when interrupt is detected/serviced

IT2: External interrupt 2 is falling-edge/low-level triggered when this bit is set/cleared by software

INTERRUPT SOURCE	VECTOR ADDRESS	POLLING SEQUENCE WITHIN PRIORITY LEVEL	ENABLE REQUIRED SETTINGS	INTERRUPT TYPE EDGE/LEVEL
External Interrupt 0	03H	0 (highest)	IE.0	TCON.0
Timer/Counter 0	0BH	1	IE.1	-
External Interrupt 1	13H	2	IE.2	TCON.2
Timer/Counter 1	1BH	3	IE.3	-
Serial Port	23H	4	IE.4	-
Timer/Counter 2	2BH	5	IE.5	-
External Interrupt 2	33H	6	XICON.2	XICON.0
External Interrupt 3	3BH	7 (lowest)	XICON.6	XICON.3

Eight-source interrupt information:

P4CONB (C3H)

BIT	NAME	FUNCTION
		00: Mode 0. P4.3 is a general purpose I/O port which is the same as Port1.
		01: Mode 1. P4.3 is a Read Strobe signal for chip select purpose. The address range depends on the SFR P43AH, P43AL, P43CMP1 and P43CMP0.
7, 6	P43FUN1 P43FUN0	 Mode 2. P4.3 is a Write Strobe signal for chip select purpose. The address range depends on the SFR P43AH, P43AL, P43CMP1 and P43CMP0.
		 Mode 3. P4.3 is a Read/Write Strobe signal for chip select purpose. The address range depends on the SFR P43AH, P43AL, P43CMP1, and P43CMP0.
		Chip-select signals address comparison:
		00: Compare the full address (16 bits length) with the base address register P43AH, P43AL.
5, 4	P43CMP1 P43CMP0	01: Compare the 15 high bits (A15–A1) of address bus with the base address register P43AH, P43AL.
	P43CMP0	10: Compare the 14 high bits (A15–A2) of address bus with the base address register P43AH, P43AL.
		11: Compare the 8 high bits (A15–A8) of address bus with the base address register P43AH, P43AL.
3, 2	P42FUN1	The P4.2 function control bits which are the similar definition as P43FUN1,
3, Z	P42FUN0	P43FUN0.
1, 0	P42CMP1	The P4.2 address comparator length control bits which are the similar definition
1, 0	P42CMP0	as P43CMP1, P43CMP0.

P4CONA (C2H)

BIT	NAME	FUNCTION					
7.0	P41FUN1	The P4.1 function control bits which are the similar definition as P43FUN1,					
7, 6	P41FUN0	P43FUN0.					
F 4	P41CMP1	The P4.1 address comparator length control bits which are the similar definition					
5, 4	P41CMP0	as P43CMP1, P43CMP0.					
2.2	P40FUN1	The P4.0 function control bits which are the similar definition as P43FUN1,					
3, 2	P40FUN0	P43FUN0.					
1.0	P40CMP1	The P4.0 address comparator length control bits which are the similar definition					
1, 0	P40CMP0	as P43CMP1, P43CMP0.					

P2ECON (AEH)

BIT	NAME	FUNCTION		
7		The active polarity of P4.3 when pin P4.3 is defined as read and/or write strobe signal.		
	P43CSINV	= 1: P4.3 is active high when pin P4.3 is defined as read and/or write strobe signal.		
		= 0: P4.3 is active low when pin P4.3 is defined as read and/or write strobe signal.		
6	P42CSINV	The similarity definition as P43SINV.		
5	P41CSINV	The similarity definition as P43SINV.		
4	P40CSINV	The similarity definition as P43SINV.		
3	-	Reserve		
2	-	Reserve		
1	-	0		
0	-	0		
Port 4 Base Address Registers				
P40AH,	P40AL:			

FEER Winbond

Port 4 Base Address Registers

P40AH, P40AL:

The Base address register for comparator of P4.0. P40AH contains the high-order byte of address, P40AL contains the low-order byte of address.

P41AH. P41AL:

The Base address register for comparator of P4.1. P41AH contains the high-order byte of address, P41AL contains the low-order byte of address.

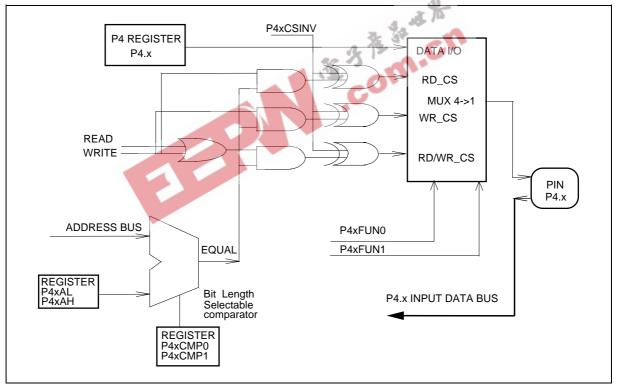
P42AH, P42AL:

The Base address register for comparator of P4.2. P42AH contains the high-order byte of address, P42AL contains the low-order byte of address.

P43AH, P43AL:

The Base address register for comparator of P4.3. P43AH contains the high-order byte of address, P43AL contains the low-order byte of address.

P4 (D8H)


BIT	NAME	FUNCTION
7	-	Reserve
6	-	Reserve
5	-	Reserve
4	-	Reserve
3	P43	Port 4 Data bit which outputs to pin P4.3 at mode 0.
2	P42	Port 4 Data bit. which outputs to pin P4.2 at mode 0.
1	P41	Port 4 Data bit. which outputs to pin P4.1at mode 0.
0	P40	Port 4 Data bit which outputs to pin P4.0 at mode 0.

FEESE winbond

Here is an example to program the P4.0 as a write strobe signal at the I/O port address 1234H–1237H and positive polarity, and P4.1–P4.3 are used as general I/O ports.

MOV P40AH,#12H	
MOV P40AL,#34H	; Base I/O address 1234H for P4.0
MOV P4CONA,#00001010B	; P4.0 a write strobe signal and address line A0 and A1 are masked.
MOV P4CONB,#00H	; P4.1–P4.3 as general I/O port which are the same as PORT1
MOV P2ECON,#10H	; Write the P40SINV = 1 to inverse the P4.0 write strobe polarity
	; default is negative.

Then any instruction MOVX @DPTR,A (with DPTR = 1234H–1237H) will generate the positive polarity write strobe signal at pin P4.0. And the instruction MOV P4,#XX will output the bit3 to bit1 of data #XX to pin P4.3–P4.1.

In-System Programming (ISP) Mode

The W78L058A equips one 32K byte of main ROM bank for application program (called APROM) and one 4K byte of auxiliary ROM bank for loader program (called LDROM). In the normal operation, the microcontroller executes the code in the APROM. If the content of APROM needs to be modified, the W78L058A allows user to activate the In-System Programming (ISP) mode by setting the CHPCON register. The CHPCON is read-only by default, software must write two specific values 87H, then 59H sequentially to the CHPENR register to enable the CHPCON write attribute. Writing CHPENR register with the values except 87H and 59H will close CHPCON register write

FEESE winbond

attribute. The W78L058A achieves all in-system programming operations including enter/exit ISP Mode, program, erase, read ... etc, during device in the idle mode. Setting the bit CHPCON.0 the device will enter in-system programming mode after a wake-up from idle mode. Because device needs proper time to complete the ISP operations before awaken from idle mode, software may use timer interrupt to control the duration for device wake-up from idle mode. To perform ISP operation for revising contents of APROM, software located at APROM setting the CHPCON register then enter idle mode, after awaken from idle mode the device executes the corresponding interrupt service routine in LDROM. Because the device will clear the program counter while switching from APROM to LDROM, the first execution of RETI instruction in interrupt service routine will jump to 00H at LDROM area. The device offers a software reset for switching back to APROM while the content of APROM has been updated completely. **Setting CHPCON register bit 0, 1 and 7 to logic-1 will result a software reset to reset the CPU**. The software reset serves as a external reset. This in-system programming feature makes the job easy and efficient in which the application needs to update firmware frequently. In some applications, the in-system programming feature make it possible to easily update the system firmware without opening the chassis.

Note: The ISP Mode operates by supply voltage from 3.3V to 5.5V.

SFRAH, SFRAL: The objective address of on-chip ROM in the in-system programming mode. SFRAH contains the high-order byte of address, SFRAL contains the low-order byte of address.

SFRFD: The programming data for on-chip ROM in programming mode.

SFRCN: The control byte of on-chip ROM programming mode.

SFRCN (C7)

BIT	NAME	FUNCTION
7	-	Reserve.
		On-chip ROM bank select for in-system programming.
6	WFWIN	= 0: 32K bytes ROM bank is selected as destination for re-programming.
		= 1: 4K bytes ROM bank is selected as destination for re-programming.
5	OEN	ROM output enable.
4	CEN	ROM chip enable.
3, 2, 1, 0	CTRL[3:0]	The flash control signals

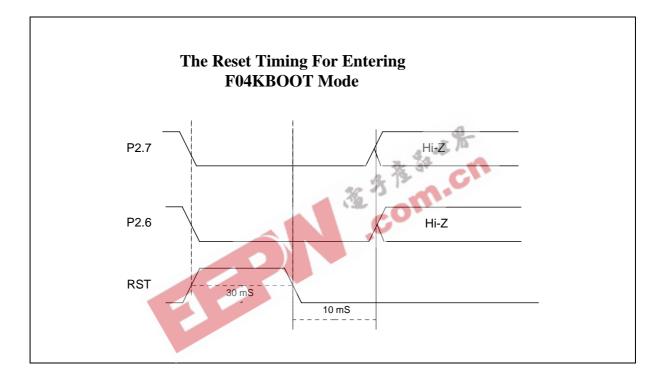
MODE	WFWIN	CTRL<3:0>	OEN	CEN	SFRAH, SFRAL	SFRFD
Erase 32KB APROM	0	0010	1	0	Х	Х
Program 32KB APROM	0	0001	1	0	Address in	Data in
Read 32KB APROM	0	0000	0	0	Address in	Data out
Erase 4KB LDROM	1	0010	1	0	Х	Х
Program 4KB LDROM	1	0001	1	0	Address in	Data in
Read 4KB LDROM	1	0000	0	0	Address in	Data out

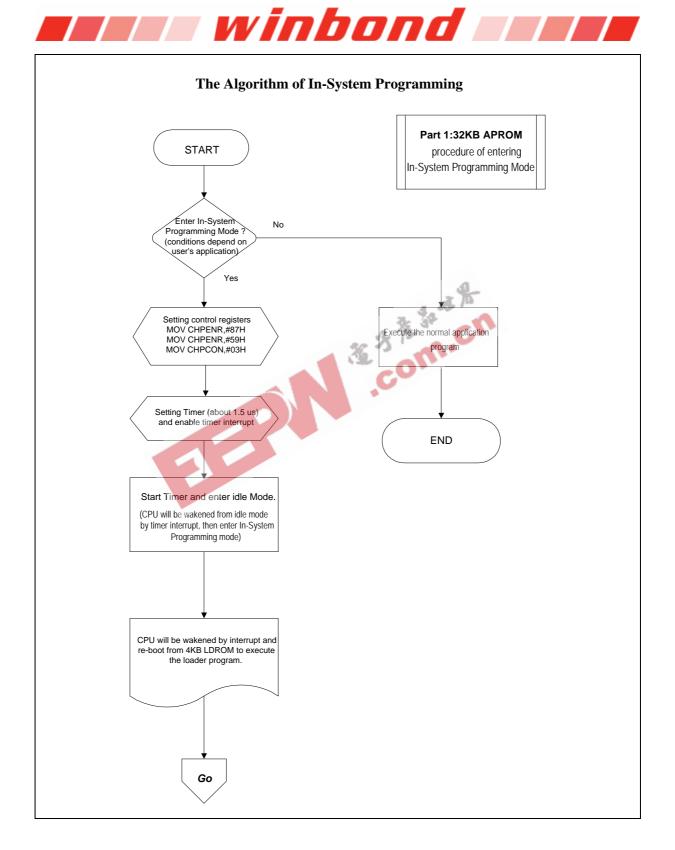
winbond

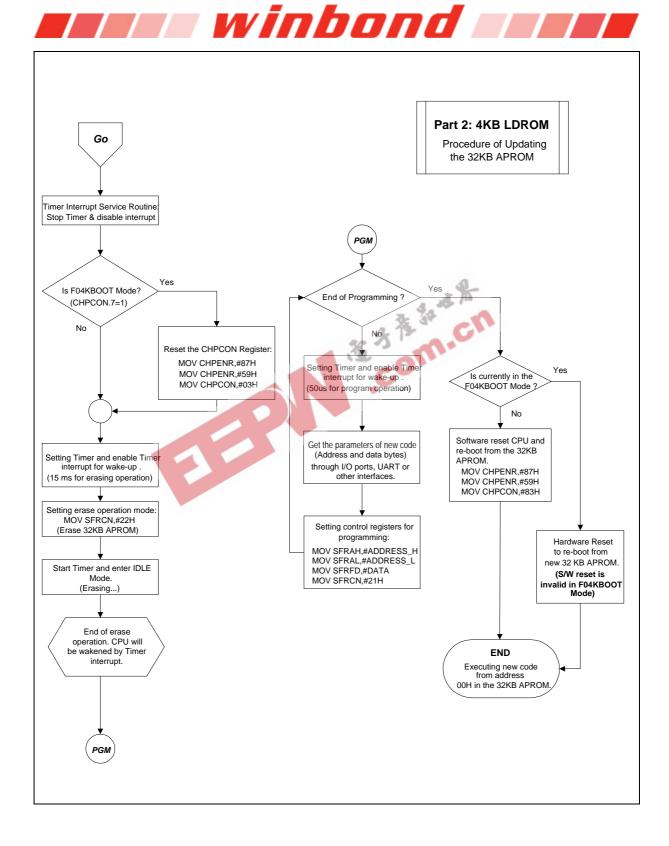
In-System Programming Control Register (CHPCON)

CHPCON (BFH)

BIT	NAME	FUNCTION
7	SWRESET (F04KMODE)	When this bit is set to 1, and both FBOOTSL and FPROGEN are set to 1. It will enforce microcontroller reset to initial condition just like power on reset. This action will re-boot the microcontroller and start to normal operation. To read this bit in logic-1 can determine that the F04KBOOT mode is running.
6	-	Reserve.
5	-	Reserve.
4	ENAUXRAM	1: Enable on-chip AUX-RAM. 0: Disable the on-chip AUX-RAM
3	0	Must set to 0.
2	0	Must set to 0.
1	FBOOTSL	 The Program Location Select. 0: The Loader Program locates at the 32 KB APROM. 4KB LDROM is destination for re-programming. 1: The Loader Program locates at the 4 KB memory bank. 32KB APROM is destination for re-programming.
0	FPROGEN	 ROM Programming Enable. = 1: enable. The microcontroller enter the in-system programming mode after entering the idle mode and wake-up from interrupt. During in-system programming mode, the operation of erase, program and read are achieve when device enters idle mode. = 0: disable. The on-chip flash memory is read-only. In-system programmability is disabled.

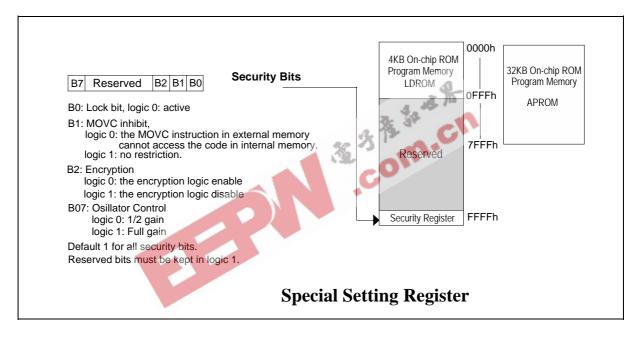

F04KBOOT Mode (Boot From LDROM)


By default, the W78L058A boots from APROM program after a power on reset. On some occasions, user can force the W78L058A to boot from the LDROM program via following settings. The possible situation that you need to enter F04KBOOT mode when the APROM program can not run properly and device can not jump back to LDROM to execute in-system programming function. Then you can use this F04KBOOT mode to force the W78L058A jumps to LDROM and executes in-system programming procedure. When you design your system, you may reserve the pins P2.6, P2.7 to switches or jumpers. For example in a CD-ROM system, you can connect the P2.6 and P2.7 to PLAY and EJECT buttons on the panel. When the APROM program fails to execute the normal application program. User can press both two buttons at the same time and then turn on the power of the personal computer to force the W78L058A to enter the F04KBOOT mode. After power on of personal computer, you can release both buttons and finish the in-system programming procedure to update the APROM code. In application system design, user must take care of the P2, P3, ALE, EA and PSEN pin value at reset to prevent from accidentally activating the programming mode or F04KBOOT mode.



F04KBOOT MODE

P4.3	P2.7	P2.6	MODE
Х	L	L	FO4KBOOT
L	Х	Х	FO4KBOOT



6. SECURITY

During the on-chip ROM programming mode, the ROM can be programmed and verified repeatedly. Until the code inside the ROM is confirmed OK, the code can be protected. The protection of ROM and those operations on it are described below.

The W78L058A has a Security Register that can be accessed in programming mode. Those bits of the Security Registers can not be changed once they have been programmed from high to low. They can only be reset through erase-all operation. The Security Register is located at the 0FFFFH of the LDROM space.

Lock bit

This bit is used to protect the customer's program code in the W78L058A. It may be set after the programmer finishes the programming and verifies sequence. Once this bit is set to logic 0, both the ROM data and Security Register can not be accessed again.

MOVC Inhibit

This bit is used to restrict the accessible region of the MOVC instruction. It can prevent the MOVC instruction in external program memory from reading the internal program code. When this bit is set to logic 0, a MOVC instruction in external program memory space will be able to access code only in the external memory, not in the internal memory. A MOVC instruction in internal program memory space will always be able to access the ROM data in both internal and external memory. If this bit is logic 1, there are no restrictions on the MOVC instruction.

Encryption

This bit is used to enable/disable the encryption logic for code protection. Once encryption feature is enabled, the data presented on port 0 will be encoded via encryption logic. Only whole chip erase will reset this bit.

Oscillator Control

W78L058A/E516 allow user to diminish the gain of on-chip oscillator amplifier by using programmer to set the bit B7 of security register. Once B7 is set to 0, a half of gain will be decreased. Care must be taken if user attempts to diminish the gain of oscillator amplifier, reducing a half of gain may improperly affect the external crystal operation at high frequency above 20 MHz. The value of R and C1, C2 may need some adjustment while running at lower gain.

7. ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
DC Power Supply	VDD-VSS	-0.3	+6.0	V
Input Voltage	Vin	Vss -0.3	Vdd +0.3	V
Operating Temperature	ТА	0	60	°C
Storage Temperature	Tst	-55	+150	°C
of the device.		com		

8. DC CHARACTERISTICS

Vss = 0V, TA = 25° C, unless otherwise specified.

PARAMETER	SYM.	SPECI	FICATION	UNIT	TEST CONDITIONS	
FARAMETER	5 T WI.	MIN.	MAX.	UNIT	TEST CONDITIONS	
Operating Voltage	Vdd	2.4	5.5	V	Without ISP	
Operating voltage	Vdd	3.3	5.5	V	With ISP	
Operating Current	IDD	-	20	mA	No load VDD = 5.5V	
	טטו	-	3	mA	No load VDD = 2.4V	
Idle Current	IDLE	-	6	mA	VDD = 5.5V, $Fosc = 20 MHz$	
	IIDLE	-	1.5	mA	VDD = 2.4V, Fosc = 12 MHz	
Power Down Current	IPWDN	-	50	μA	VDD = 5.5V, Fosc = 20 MHz	
r ower Down Current		-	20	μA	VDD = 2.4V, Fosc = 12 MHz	
Input Current	linia	50	10	***	VDD = 5.5V	
P1, P2, P3, P4	lin1	-50	+10	μĀ	VIN = 0V or VDD	
Input Current	lin2	-10	+300	ΟμΑ	VDD = 5.5V	
RST	IIINZ		+300	μΑ	0 < VIN < VDD	
Input Leakage Current	Ilk	-10	+10		VDD = 5.5V	
P0, EA	ILK	-10	710	μA	0V < VIN < VDD	
Logic 1 to 0 Transition					Vdd = 5.5V	
Current	ITL [*4]	-500	-	μA	VIN = 2.0V	
P1, P2, P3, P4						
Input Low Voltage	VIL1	0	0.8	V	VDD = 4.5V	
P0, P1, P2, P3, P4, EA		0	0.5	V	VDD = 2.4V	
Input Low Voltage	VIL2	0	0.8	V	VDD = 4.5V	
RST[*1]	VILZ	0	0.3	V	VDD = 2.4V	
Input Low Voltage	VIL3	0	0.8	V	VDD = 4.5V	
XTAL1 [*3]	VILS	0	0.4	V	VDD = 2.4V	
Input High Voltage	Mula	2.4	Vdd +0.2	V	VDD = 5.5V	
P0, P1, P2, P3, P4, EA	VIH1	1.4	Vdd +0.2	V	VDD = 2.4V	
Input High Voltage		3.5	Vdd +0.2	V	VDD = 5.5V	
RST[*1]	VIH2	1.7	Vdd +0.2	V	VDD = 2.4V	
Input High Voltage	Vінз	3.5	Vdd +0.2	V	VDD = 5.5V	
XTAL1 [*3]	VIH3	2.4	Vdd +0.2	V	VDD = 2.4V	

F

DC CHARACTERISTICS, continued

PARAMETER	SYM.	SPECIFICATION		UNIT	TEST CONDITIONS	
	5 T WI.	MIN.	MAX.	UNIT	TEST CONDITIONS	
Output Low Voltage	VOL1	-	0.45	V	VDD = 4.5V, $IOL = +2 mA$	
P1, P2, P3, P4	VOLT	-	0.25	V	VDD = 2.4V, IOL = +1 mA	
Output Low Voltage		-	0.45	V	VDD = 4.5V, IOL = +4 mA	
P0, ALE, PSEN [*2]	Vol2	-	0.25	V	VDD = 2.4V, $IOL = +2 mA$	
Sink Current	ISK1	4	12	mA	VDD = 4.5V, Vin = 0.45V	
P1, P2, P3, P4	ISKI	1.8	5.4	mA	VDD = 2.4V, Vin = 0.45V	
Sink Current	love	8	16	mA	VDD = 4.5V, Vin = 0.45V	
P0, ALE, PSEN	ISK2	4.5	9	mA	VDD = 2.4V, Vin = 0.4V	
Output High Voltage	Voh1	2.4	-	V	VDD = 4.5V, IOH = -100 μ A	
P1, P2, P3, P4	VOHI	1.4	A.	V	VDD = 2.4V, IOH = -8 μA	
Output High Voltage	Vон2	2.4		V	Vdd = 4.5V, IOH = -400 μA	
P0, ALE, PSEN [*2]	V OH2	1.4	- 0	Ov	Vdd = 2.4V, Ioh = -200 μ A	
Source Current	ISR1	-100	-250	μA	VDD = 4.5V, Vin = 2.4V	
P1, P2, P3, P4	ISRI	-20	-50	μA	VDD = 2.4V, Vin = 1.4V	
Source Current		-8	-14	mA	VDD = 4.5V, Vin = 2.4V	
P0, ALE, PSEN	ISR2	-1.9	-3.8	mA	VDD = 2.4V, Vin = 1.4V	

Notes:

*1. RST pin is a Schmitt trigger input.

*2. P0, ALE and $\overrightarrow{\text{PSEN}}$ are tested in the external access mode.

*3. XTAL1 is a CMOS input.

*4. Pins of P1, P2, P3, P4 can source a transition current when they are being externally driven from 1 to 0.

9. AC CHARACTERISTICS

The AC specifications are a function of the particular process used to manufacture the part, the ratings of the I/O buffers, the capacitive load, and the internal routing capacitance. Most of the specifications can be expressed in terms of multiple input clock periods (TCP), and actual parts will usually experience less than a ± 20 nS variation. The numbers below represent the performance expected from a 0.6 micron CMOS process when using 2 and 4 mA output buffers.

Clock Input Waveform

XTAL1		CH T _{CL} FOP, TCP		
PARAMETER	SYMBOL	MIN TYP MAX	LINIT	NOTES

PARAMETER	SYMBOL	MIN. STYP.		MAX.	UNIT	NOTES
Operating Speed	FOP	0	on.	20	MHz	1
Clock Period	TCP	50	-	-	nS	2
Clock High	Тсн	25	-	-	nS	3
Clock Low	TCL	25	-	-	nS	3

Notes:

1. The clock may be stopped indefinitely in either state.

2. The TCP specification is used as a reference in other specifications.

3. There are no duty cycle requirements on the XTAL1 input.

Program Fetch Cycle

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTES
Address Valid to ALE Low	TAAS	1 TCP- Δ	-	-	nS	4
Address Hold from ALE Low	Таан	1 Тср-∆	-	-	nS	1, 4
ALE Low to PSEN Low	TAPL	1 TCP- Δ	-	-	nS	4
PSEN Low to Data Valid	Tpda	-	-	2 TCP	nS	2
Data Hold after PSEN High	TPDH	0	-	1 TCP	nS	3
Data Float after PSEN High	Tpdz	0	-	1 TCP	nS	
ALE Pulse Width	TALW	2 TCP- Δ	2 TCP	-	nS	4
PSEN Pulse Width	TPSW	$3 \text{ Tcp-}\Delta$	3 Тср	-	nS	4

Notes:

1. P0.0-P0.7, P2.0-P2.7 remain stable throughout entire memory cycle.

2. Memory access time is 3 TCP.

3. Data have been latched internally prior to PSEN going high.

4. " Δ " (due to buffer driving delay and wire loading) is 20 nS.

The second second

Data Read Cycle

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTES
ALE Low to RD Low	TDAR	З Тср- Δ	-	3 TCP+ Δ	nS	1, 2
RD Low to Data Valid	Tdda	-	-	4 TCP	nS	1
Data Hold from RD High	TDDH	0	-	2 TCP	nS	
Data Float from RD High	Tddz	0	-	2 TCP	nS	
RD Pulse Width	Tdrd	6 Тср-д	6 TCP	-	nS	2

Notes:

1. Data memory access time is 8 Tcp.

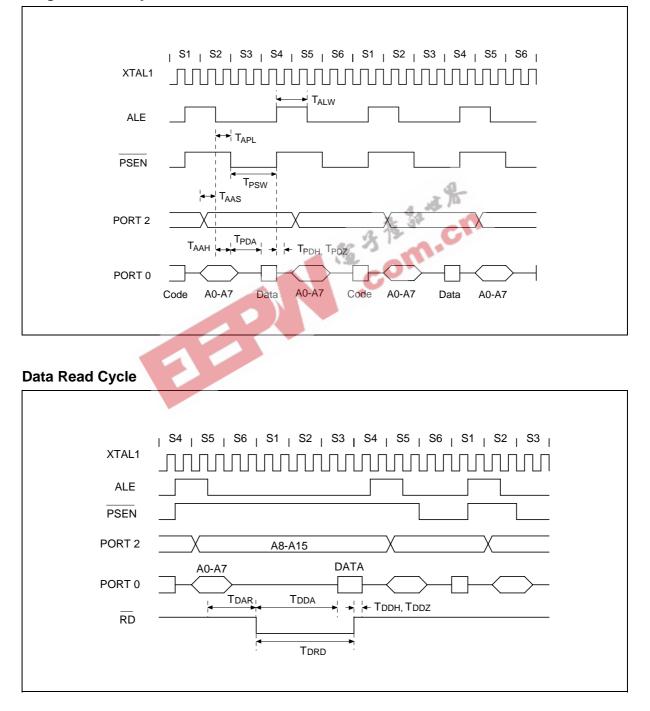
2. " Δ " (due to buffer driving delay and wire loading) is 20 nS.

Data Write Cycle

	1.32				
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
ALE Low to WR Low	TDAW	3 Тср-∆	-	3 Tcp+ Δ	nS
Data Valid to WR Low	TDAD	1 TCP-∆	-	-	nS
Data Hold from WR High	Towd	1 Тср-∆	-	-	nS
WR Pulse Width	TDWR	6 Тср-∆	6 Тср	-	nS

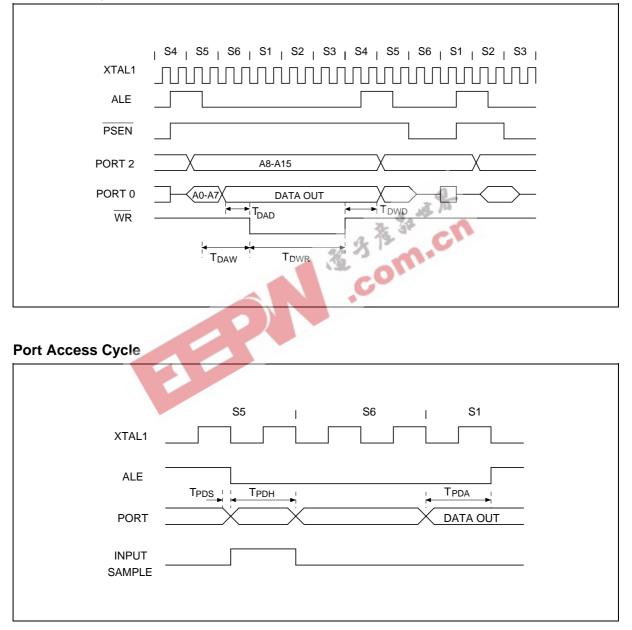
Note: " Δ " (due to buffer driving delay and wire loading) is 20 nS.

Port Access Cycle


PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Port Input Setup to ALE Low	TPDS	1 TCP	-	-	nS
Port Input Hold from ALE Low	Трдн	0	-	-	nS
Port Output to ALE	Tpda	1 TCP	-	-	nS

Note: Ports are read during S5P2, and output data becomes available at the end of S6P2. The timing data are referenced to ALE, since it provides a convenient reference.

10. TIMING WAVEFORMS


Program Fetch Cycle

Timing Waveforms, continued

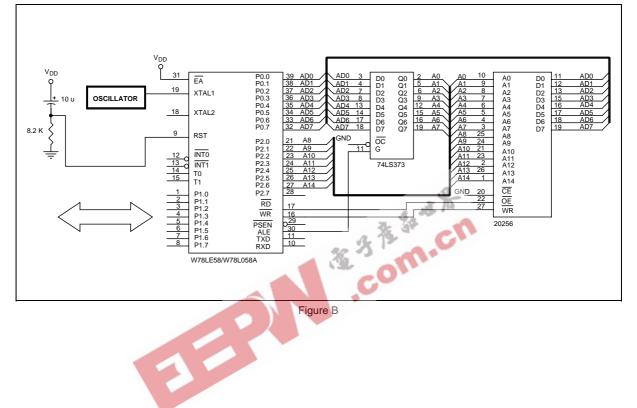
Data Write Cycle

11. TYPICAL APPLICATION CIRCUIT

Expanded External Program Memory and Crystal

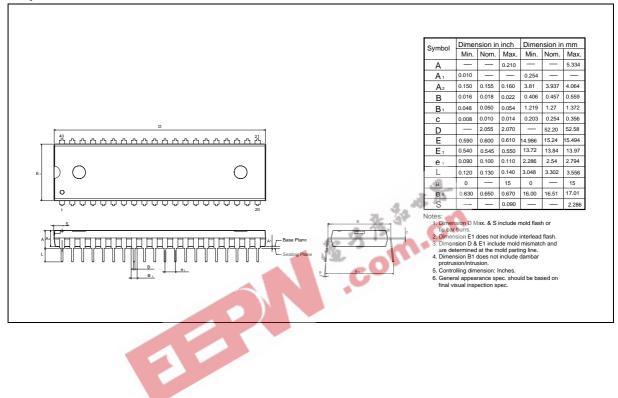
CRYSTAL	C1	C2	R
6 MHz	47P	47P	-
16 MHz	30P	30P	-
20 MHz	15P	10P	-

Above table shows the reference values for crystal applications.

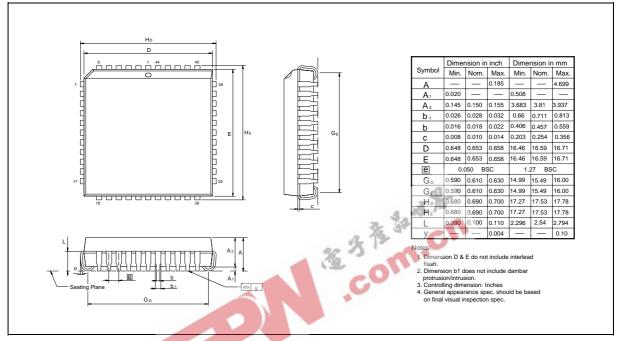

Notes:

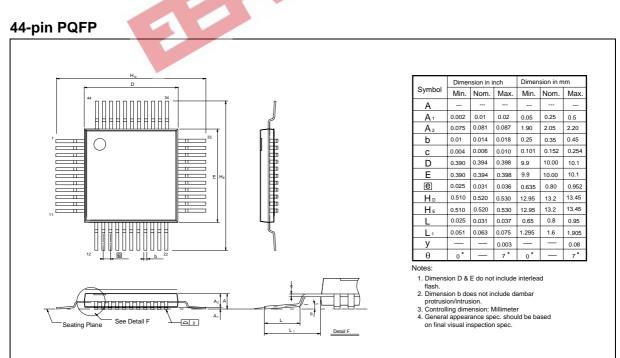
- 1. C1, C2, R components refer to Figure A
- 2. Crystal layout must get close to XTAL1 and XTAL2 pins on user's application board.

Typical Application Circuit, continued


11.1 Expanded External Data Memory and Oscillator

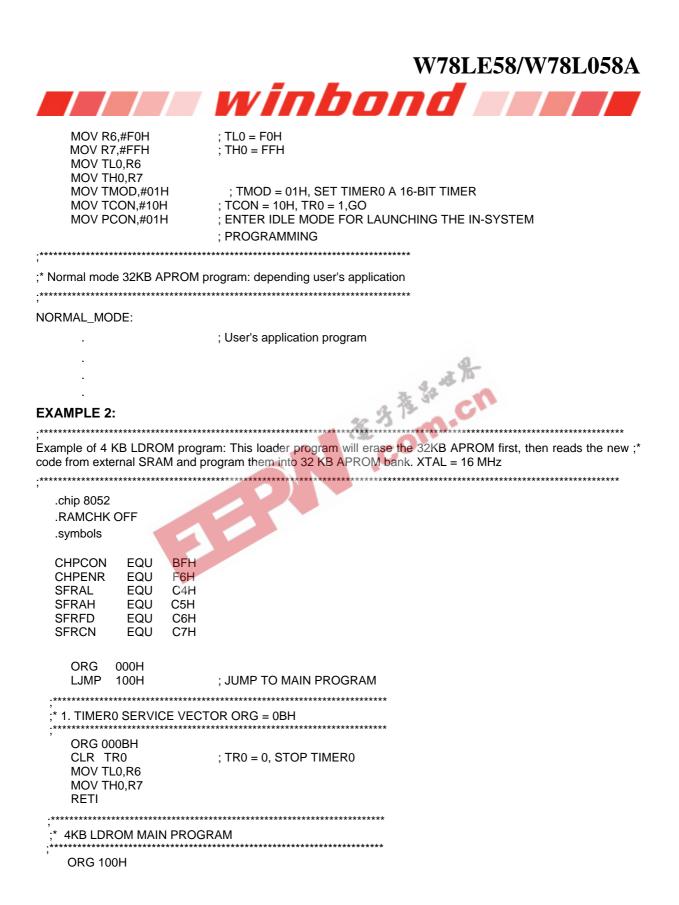
40-pin DIP




FEESE Winbond

Package Dimensions, continued

44-pin PLCC


Application Note: In-system Programming Software Examples

This application note illustrates the in-system programmability of the Winbond W78L058A ROM microcontroller. In this example, microcontroller will boot from 32KB APROM bank and waiting for a key to enter in-system programming mode for re-programming the contents of 32KB APROM. While entering in-system programming mode, microcontroller executes the loader program in 4KB LDROM bank. The loader program erases the 32KB APROM then reads the new code data from external SRAM buffer (or through other interfaces) to update the 32KB APROM.

winbond

EXAMPLE 1:

EXAMPLE 1:
;* Example of 32K APROM program: Program will scan the P1.0. if P1.0 = 0, enters in-system ;* programming mode for updating the content of APROM code else executes the current ROM code. ;* XTAL = 16 MHz
, chip 8052 .RAMCHK OFF .symbols
, .chip 8052 .RAMCHK OFF .symbols CHPCON EQU BFH CHPENR EQU F6H SFRAL EQU C4H SFRAH EQU C5H SFRFD EQU C6H SFRCN EQU C7H
ORG 0H LJMP 100H ; JUMP TO MAIN PROGRAM
* TIMER0 SERVICE VECTOR ORG = 000BH
, ORG 00BH CLR TR0 ; TR0 = 0, STOP TIMER0 MOV TL0,R6 MOV TH0,R7 RETI
, ;* 32K APROM MAIN PROGRAM
, ORG100H
MAIN_32K: MOV A,P1 ; SCAN P1.0 ANL A,#01H CJNE A,#01H,PROGRAM_32K ; IF P1.0 = 0, ENTER IN-SYSTEM PROGRAMMING MODE JMP NORMAL_MODE
PROGRAM_32K:
MOV CHPENR,#87H; CHPENR = 87H, CHPCON REGISTER WRTE ENABLEMOV CHPENR,#59H; CHPENR = 59H, CHPCON REGISTER WRITE ENABLEMOV CHPCON,#03H; CHPCON = 03H, ENTER IN-SYSTEM PROGRAMMING MODEMOV TCON,#00H; TR = 0 TIMER0 STOPMOV IP,#00H; IP = 00HMOV IE,#82H; TIMER0 INTERRUPT ENABLE FOR WAKE-UP FROM IDLE MODE

MAIN_4K: MOV SP_#COH MOV CHPENR,887H : CHPENR = 87H, CHPCON WRITE ENABLE: MOV A, CHPCON ANLA ,480H CJNE A,480H,UPDATE .32K : CHECK F04KBOOT MODE ? MOV CHPCON,403H : CHPCON = 03H, ENABLE IN-SYSTEM PROGRAMMING. MOV CHPENR,800H : DISABLE CHPCON WRITE ATTRIBUTE MOV TCON,400H :: TCON = 00H, TR = 0 TIMER0 STOP MOV TMOD,01H :: TMOD = 01H, SET TIMER0 A 16BIT TIMER MOV IE-882H :: IE = 82H, TIMER0 INTERRUPT ENABLED MOV EARLY TO TON = 10H, TR = 1 TIMER0 A 16BIT TIMER MOV IE-882H :: IE = 82H, TIMER0 INTERRUPT ENABLED MOV RCON,400H :: DISABLE CHPCON WRITE ATTRIBUTE MOV ICON,410H :: TCON = 10H, TR = 1, GO MOV PCON,401H :: ENTER IDLE MODE UPDATE .32K MOV CHPENR,400H :: DISABLE CHPCON WRITE ATTRIBUTE MOV CON,410H :: TCON = 10H, TR = 1, GO MOV PCON,401H :: ENTER IDLE MODE UPDATE .32K MOV CHPENR,400H :: DISABLE CHPCON WRITE ATTRIBUTE MOV RCON,400H :: DISABLE CHPCON WRITE ATTRIBUTE MOV RCON,401H :: ENTER IDLE MODE UPDATE .32K MOV CHPENR,400H :: DISABLE CHPCON WRITE ATTRIBUTE MOV RCON,401H :: ENTER IDLE MODE WOV RF.42EH :: WE SCH. MOV SFRUMA22H :: SERTIMER0 INTERRUPT ENABLED MOV R6,#ECH :: SERTAL ODDRESS = 0H MOV SFRUMA1H :: ENTER IDLE MODE (FOR ERASE OPERATION, ABOUT 15 mS. DEPENDING MOV SFRUMA22H :: SET TIMER FOR REASE OPERATION, ABOUT 1.5 µS. MOV SFRUMA22H :: SET TIMER FOR REASE OPERATION, ABOUT 1.5 µS. ELANK CHECK MOV SFRUMA1H :: ENTER IDLE MODE (FOR ERASE OPERATION, ABOUT 1.5 µS. MOV R7,#FFH MOV TO,8,#FFH :: SET TIMER FOR READ OPERATION, ABOUT 1.5 µS. ELANK.CHECK. MOV SFRUMA1H :: ENTER IDLE MODE BYTE CUNE A,#FFH, BLANK.CHECK_ERROR		
MOV SP.#COH MOV CHPENR,#37H ; CHPENR = 37H, CHPCON WRITE ENABLE. MOV A, CHPEON ANL A,#80H CJNE A,#80H, UPDATE, 32K ; CHECK F04KBOOT MODE ? MOV CHPCON,#03H ; CHPCON = 03H, ENABLE IN-SYSTEM PROGRAMMING. MOV CHPENR,#00H ; DISABLE CHPCON WRITE ATTRIBUTE MOV TCON,#00H ; TCON = 00H, TR = 0 TIMERO STOP MOV TMOD,#01H ; TMOD = 01H, SET TIMERO A 16BIT TIMER MOV 16,#20H ; IP = 00H MOV 16,#20H ; IP = 00H MOV 16,#20H ; IP = 00H MOV 16,#20H ; IE = 82H, TIMERO INTERRUPT ENABLED MOV 7CON,#01H ; TCON = 10H, TRD = 1, GO MOV TOO, N,#01H ; TCON = 01H, TRD = 1, GO MOV CHPENR,#00H ; IDSABLE CHPCON WRITE ATTRIBUTE MOV CON,#01H ; TCON = 00H, TR = 0 TIMERO STOP MOV TOON,#01H ; TCON = 00H, TR = 0 TIMERO STOP MOV TOON,#01H ; TCON = 00H, TR = 0 TIMERO STOP MOV FOON,#01H ; TOON = 00H, TR = 0 TIMERO MOV FOON,#01H ; TOON = 00H, TR = 0 TIMESOP MOV IP 400H ; IP = 00H MOV R,#50H ; IDSABLE CHPCON WRITE ATTRIBUTE MOV CHPENR,#00H ; IDSABLE CHPCON WRITE ATTRIBUTE MOV R0M, ST # 10M STOP MOV IP 400H ; IP = 00H MOV R6,#50H ; IDSABLE CHPCON WRITE ATTRIBUTE MOV R6,#50H ; IDSABLE TIMER INFOR WRITE ATTRIBUTE MOV SRCN,#21H ; IDSABLE CHPCON WRITE ATTRIBUTE MOV SRCN,#20H ; IDSABLE CHPCON WRITE ATTRIBUTE MOV R6,#50H ; IST TIMER FOR ERASE OPERATION, ABOUT 15 mS. DEPENDING MOV FCON,#01H ; ENTER IDLE MODE (FOR ERASE OPERATION)		winbond
MOV SP.#COH MOV CHPENR,#37H ; CHPENR = 37H, CHPCON WRITE ENABLE. MOV A, CHPEON ANL A,#80H CJNE A,#80H, UPDATE, 32K ; CHECK F04KBOOT MODE ? MOV CHPCON,#03H ; CHPCON = 03H, ENABLE IN-SYSTEM PROGRAMMING. MOV CHPENR,#00H ; DISABLE CHPCON WRITE ATTRIBUTE MOV TCON,#00H ; TCON = 00H, TR = 0 TIMERO STOP MOV TMOD,#01H ; TMOD = 01H, SET TIMERO A 16BIT TIMER MOV 16,#20H ; IP = 00H MOV 16,#20H ; IP = 00H MOV 16,#20H ; IP = 00H MOV 16,#20H ; IE = 82H, TIMERO INTERRUPT ENABLED MOV 7CON,#01H ; TCON = 10H, TRD = 1, GO MOV TOO, N,#01H ; TCON = 01H, TRD = 1, GO MOV CHPENR,#00H ; IDSABLE CHPCON WRITE ATTRIBUTE MOV CON,#01H ; TCON = 00H, TR = 0 TIMERO STOP MOV TOON,#01H ; TCON = 00H, TR = 0 TIMERO STOP MOV TOON,#01H ; TCON = 00H, TR = 0 TIMERO STOP MOV FOON,#01H ; TOON = 00H, TR = 0 TIMERO MOV FOON,#01H ; TOON = 00H, TR = 0 TIMESOP MOV IP 400H ; IP = 00H MOV R,#50H ; IDSABLE CHPCON WRITE ATTRIBUTE MOV CHPENR,#00H ; IDSABLE CHPCON WRITE ATTRIBUTE MOV R0M, ST # 10M STOP MOV IP 400H ; IP = 00H MOV R6,#50H ; IDSABLE CHPCON WRITE ATTRIBUTE MOV R6,#50H ; IDSABLE TIMER INFOR WRITE ATTRIBUTE MOV SRCN,#21H ; IDSABLE CHPCON WRITE ATTRIBUTE MOV SRCN,#20H ; IDSABLE CHPCON WRITE ATTRIBUTE MOV R6,#50H ; IST TIMER FOR ERASE OPERATION, ABOUT 15 mS. DEPENDING MOV FCON,#01H ; ENTER IDLE MODE (FOR ERASE OPERATION)	MAIN_4K:	
MOV CHPENR,#59H ; CHPENR = 59H, CHPEON WRITE ENABLE. MOV ACHPEON, #00H CJNE A,#80H, UPDATE_32K; CHECK F04KBOOT MODE ? MOV CHPEON,#00H ; ICADECN = 03H, ENABLE IN-SYSTEM PROGRAMMING. MOV CHPENR,#00H ; ICADECN = 03H, ENABLE IN-SYSTEM PROGRAMMING. MOV CON,#00H ; ICON = 00H, TR = 0 TIMER0 STOP MOV TMOD,#01H ; ITMOD = 01H, SET TIMER0 A 16BIT TIMER MOV IE,#82H ; IE = 82H, TIMER0 INTERRUPT ENABLED MOV R7,#FFH MOV TOON,#10H ; ICON = 10H, TR0 = 1, GO MOV PCON,#01H ; IDISABLE CHPCON WRITE -ATTRIBUTE MOV CON,#01H ; ICON = 10H, TR0 = 1, GO MOV PCON,#01H ; ICON = 00H, TR = 0 TIMER0 STOP MOV IND,RR MOV CHPENR,#00H ; IDISABLE CHPCON WRITE -ATTRIBUTE MOV CON,#01H ; ICON = 00H, TR = 0 TIMEST MOV CHPENR,#00H ; IDISABLE CHPCON WRITE -ATTRIBUTE MOV CHPENR,#00H ; IDISABLE CHPCON WRITE -ATTRIBUTE MOV CHPENR,#00H ; IDISABLE CHPCON WRITE -ATTRIBUTE MOV TOON,#10H ; ICON = 00H, TR = 0 TIMEST MOV THO,R7 MOV TOON,#10H ; ICON = 00H, TR = 0 TIMEST MOV TWOD,#01H ; IF = 00H MOV TR0,#E0H MOV TR0,#E0H MOV TR0,#E0H MOV TR0,#FEH MOV TOON,#10H ; SFRCN(C7H) = 22H ERASE 32K MOV TCON,#10H ; ENTER IDLE MODE (FOR ERASE OPERATION, ABOUT 15 mS. DEPENDING * BLANK CHECK MOV SFRCN,#22H ; SFRCN(C7H) = 22H ERASE 32K MOV TCON,#10H ; ENTER IDLE MODE (FOR ERASE OPERATION)		
CJNE A,#80H,UPDATE_32K ; CHECK F04KBOOT MODE ? MOV CHPENR,#00H ; DISABLE CHPCON WRITE ATTRIBUTE MOV TCON,#00H ; TCON = 00H, TR = 0 TIMER0 STOP MOV TMOD,#01H ; TMOD = 01H, SET TIMER0 A 16BIT TIMER MOV IP.#00H ; IP = 00H MOV R6,#F0H MOV R6,#F0H MOV R7,#FFH MOV R7,#FFH MOV CON,#10H ; TCON = 10H, TR0 = 1, GO MOV CON,#01H ; ENTER IDLE MODE UPDATE_32K: MOV CHPENR,#00H ; DISABLE CHPCON WRITE-ATTRIBUTE MOV CON,#01H ; ENTER IDLE MODE UPDATE_32K: MOV CHPENR,#00H ; DISABLE CHPCON WRITE-ATTRIBUTE MOV IP.#00H ; IP = 00H. TR = 0 TIMG STOP MOV IP.#00H ; IP = 00H. TR = 0 TIMG STOP MOV IP.#00H ; IP = 00H. TR = 0 TIMG STOP MOV IP.#00H ; IP = 00H. TR = 0 TIMG STOP MOV R6,#E0H ; JE = 62H, TIMER0 INTERRUPT ENABLED MOV R6,#E0H ; JE = 52H, TIMER0 INTERRUPT ENABLED MOV TMOD,#01H ; TCON = 10H, TR0 = 1,GO MOV F0,00H ; IPCON = 10H, TR0 = 1,GO MOV SFRCN,#22H ; SFRCN(C7H) = 22H ERASE 32K MOV TOON,#10H ; TCON = 10H, TR0 = 1,GO MOV SFRCN,#22H ; SFRCN(C7H) = 22H ERASE OPERATION, ABOUT 15 mS. DEPENDING ** BLANK CHECK MOV SFRCN,#0H ; READ 32KB APROM MODE MOV SFRAL,#0H ; START ADDRESS = 0H MOV SFRAL,#0H ; START ADDRESS = 0H MOV SFRAL,#0H MOV TH0,R7 BLANK_CHECK_LOOP: SETB TR0 ; ENABLE TIMER 0 MOV PCON,#01H ; ENTER IDLE MODE MOV ASRFCH 0 READ 0PERATION, ABOUT 1.5 µS. MOV TH0,R7 BLANK_CHECK_LOOP: SETB TR0 ; ENABLE TIMER 0 MOV PCON,#01H ; ENTER IDLE MODE MOV ASRFCH ; READ 0PERATION, ABOUT 1.5 µS.	MOV CHPENR,#59H MOV A,CHPCON	
MOV CHPENR,#00H ; DISABLE CHPCON WRITE ATTRIBUTE MOV TCON,#00H ; TCON = 00H, TR = 0 TIMER0 STOP MOV TMOD,#01H ; TMOD = 01H, SET TIMER0 A 16BIT TIMER MOV IF,#62H ; IE = 82H, TIMER0 INTERRUPT ENABLED MOV R6,#F0H MOV TLO,R6 MOV TCON,#10H ; TCON = 10H, TR0 = 1, GO MOV PCON,#01H ; ENTER IDLE MODE UPDATE 32K: MOV CHPENR,#00H ; DISABLE CHPCON WRITE-ATTRIBUTE MOV RCON,#00H ; IP = 00H MOV IE,#82H ; IE = 52H, TIMER0 INTERRUPT ENABLED MOV R6,#E0H ; SET WAKE-UP TIME FOR ERASE OPERATION, ABOUT 15 mS, DEPENDING ON USERS SYSTEM CLOCK RATE. MOV R6,#E0H ; SFRCN(C7H) = 22H ERASE 32K MOV TOON,#10H ; TCON = 1,GO MOV PCON,#10H ; TCON = 1,GO MOV PCON,#10H ; SFRCN(C7H) = 22H ERASE 32K MOV TOON,#10H ; ENTER IDLE MODE (FOR ERASE OPERATION) FEASE_P_4K: MOV SFRCN,#22H ; SFRCN(C7H) = 22H ERASE 32K MOV SFRCN,#0H ; START ADDRESS = 0H MOV SFRCN,#0H ; START ADDRESS = 0H MOV SFRCN,#0H ; SET TIMER FOR READ OPERATION, ABOUT 1.5 μ S. BLANK CHECK BLANK CHECK BLANK CHECK LOOP: SETB TR0 ; ENABLE TIMER 0 MOV PCON,#01H ; ENTER IDLE MODE MOV ASFRCH,#0H ; ENTER IDLE MODE MOV YCON,#01H ; ENTER IDLE MODE MOV ASFRCH,#0H ; ENTER IDLE MODE		E_32K ; CHECK F04KBOOT MODE ?
MOV TMOD,#01H : TMOD = 01H, SET TIMER0 A 16BIT TIMER MOV IP.#00H : IP = 00H MOV IE,#22H : IE = 82H, TIMER0 INTERRUPT ENABLED MOV R7.#FFH MOV TCON,#10H : TCON = 10H, TR0 = 1, GO MOV PCON,#01H : ENTER IDLE MODE UPDATE_32K: MOV CHPENR,#00H : DISABLE CHPCON WRITE-ATTRIBUTE MOV TCON,#00H : TCON = 00H TE = 0 TIMB STOP MOV IP.#00H : IP = 00H MOV IE,#82H : IE = 82H, TIMER0 INTERRUPT ENABLED MOV IROD,#01H : ENTER IDLE MODE MOV R0,#E0H : SET WAKE-UP TIME FOR ERASE OPERATION, ABOUT 15 mS. DEPENDING MOV TH0,R6 MOV TH0,R7 ERASE_P_4K: MOV SFRCN,#22H : SFRCN(C7H) = 22H ERASE 32K MOV TCON,#10H : TCON = 10H, TR0 = 1,GO MOV PCON,#10H : ENTER IDLE MODE (FOR ERASE OPERATION) **BLANK CHECK MOV SFRCN,#0H : READ 32KB APROM MODE MOV SFRCN,#0H : START ADDRESS = 0H MOV SFRCN,#0H : START ADDRESS = 0H MOV SFRCN,#0H : START ADDRESS = 0H MOV SFRCN,#0H : ENTER IDLE MODE MOV YD,0,R6 MOV TH0,R7 BLANK_CHECK LOOP: SETB TR0 : ENABLE TIMER 0 MOV PCON,#01H : ENTER IDLE MODE MOV PCON,#01H : ENTER IDLE MODE MOV YCON,#01H : ENTER IDLE MODE MOV SFRCN,#0H : READ 32KB APROM MODE MOV SFRCN,#0H : SET TIMER FOR READ OPERATION, ABOUT 1.5 µS.		
MOV IE #82H ; IE = 62H, TIMER0 INTERRUPT ENABLED MOV R6,#F0H MOV R7,#FFH MOV TLO,R6 MOV THO,R7 MOV TOON,#10H ; TCON = 10H, TR0 = 1, GO MOV PCON,#10H ; DISABLE CHPCON WRITE-ATTRIBUTE MOV CHPENR,#00H ; DISABLE CHPCON WRITE-ATTRIBUTE MOV TCON,#00H ; TCON = 00H, TR = 0 TIM STOP MOV IP,#00H ; IP = 02H, TIMERO INTERRUPT ENABLED MOV R0,#E0H ; SET WAKE-UP TIME FOR ERASE OPERATION, ABOUT 15 mS. DEPENDING MOV R7,#B1H MOV TLO,R6 MOV TOO,#10H ; TCON = 01H, TR0 = 1,GO MOV PCON,#10H ; SFRCN(C7H) = 22H ERASE 32K MOV TOO,R7 ERASE_P_4K: MOV SFRCN,#22H ; SFRCN(C7H) = 22H ERASE 32K MOV TOO,#10H ; TCON = 10H, TR0 = 1,GO MOV PCON,#10H ; START ADDRESS = 0H MOV SFRAL,#0H MOV SFRAL,#0H ; START ADDRESS = 0H MOV SFRAL,#0H MOV R0,#FFH ; SET TIMER FOR READ OPERATION, ABOUT 1.5 µS. MOV R0,#FFH ; SET TIMER FOR READ OPERATION, ABOUT 1.5 µS.	MOV TMOD,#01H	; TMOD = 01H, SET TIMER0 A 16BIT TIMER
MOV CTCON,#00H ; DONALE CHOON WITH FAILWOPT MOV TCON,#00H ; IP = 00H ; TR = 0 TIMO STOP MOV IP,#00H ; IP = 00H MOV IE,#82H ; IE = 82H, TIMERO INTERRUPT ENABLED MOV R6,#E0H ; SET WAKE-UP TIME FOR ERASE OPERATION, ABOUT 15 mS. DEPENDING ON USER'S SYSTEM CLOCK RATE. MOV R7,#B1H MOV TLO,R6 MOV THO,R7 ERASE_P_4K: MOV SFRCN,#22H ; SFRCN(C7H) = 22H ERASE 32K MOV TCON,#10H ; TCON = 10H, TR0 = 1,GO MOV PCON,#01H ; ENTER IDLE MODE (FOR ERASE OPERATION) ************************************	MOV IE,#82H MOV R6,#F0H	; IE = 82H, TIMER0 INTERRUPT ENABLED
MOV CTCON,#00H ; DONALE CHOON WITH FAILWOPT MOV TCON,#00H ; IP = 00H ; TR = 0 TIMO STOP MOV IP,#00H ; IP = 00H MOV IE,#82H ; IE = 82H, TIMERO INTERRUPT ENABLED MOV R6,#E0H ; SET WAKE-UP TIME FOR ERASE OPERATION, ABOUT 15 mS. DEPENDING ON USER'S SYSTEM CLOCK RATE. MOV R7,#B1H MOV TLO,R6 MOV THO,R7 ERASE_P_4K: MOV SFRCN,#22H ; SFRCN(C7H) = 22H ERASE 32K MOV TCON,#10H ; TCON = 10H, TR0 = 1,GO MOV PCON,#01H ; ENTER IDLE MODE (FOR ERASE OPERATION) ************************************	MOV TL0,R6	to the second
MOV CTCON,#00H ; DONALE CHOON WITH FAILWOPT MOV TCON,#00H ; IP = 00H ; TR = 0 TIMO STOP MOV IP,#00H ; IP = 00H MOV IE,#82H ; IE = 82H, TIMERO INTERRUPT ENABLED MOV R6,#E0H ; SET WAKE-UP TIME FOR ERASE OPERATION, ABOUT 15 mS. DEPENDING ON USER'S SYSTEM CLOCK RATE. MOV R7,#B1H MOV TLO,R6 MOV THO,R7 ERASE_P_4K: MOV SFRCN,#22H ; SFRCN(C7H) = 22H ERASE 32K MOV TCON,#10H ; TCON = 10H, TR0 = 1,GO MOV PCON,#01H ; ENTER IDLE MODE (FOR ERASE OPERATION) ************************************	MOV TCON,#10H	; TCON = 10H, TR0 = 1, GO ; ENTER IDLE MODE
MOV CTCON,#00H ; DONALE CHOON WITH FAILWOPT MOV TCON,#00H ; IP = 00H ; TR = 0 TIMO STOP MOV IP,#00H ; IP = 00H MOV IE,#82H ; IE = 82H, TIMERO INTERRUPT ENABLED MOV R6,#E0H ; SET WAKE-UP TIME FOR ERASE OPERATION, ABOUT 15 mS. DEPENDING ON USER'S SYSTEM CLOCK RATE. MOV R7,#B1H MOV TLO,R6 MOV THO,R7 ERASE_P_4K: MOV SFRCN,#22H ; SFRCN(C7H) = 22H ERASE 32K MOV TCON,#10H ; TCON = 10H, TR0 = 1,GO MOV PCON,#01H ; ENTER IDLE MODE (FOR ERASE OPERATION) ************************************		
MOV TMOD,#01H MOV R6,#E0H MOV R6,#E0H MOV R7,#B1H MOV TL0,R6 MOV TH0,R7 ERASE_P_4K: MOV SFRCN,#22H SFRCN(C7H) = 22H ERASE 32K MOV TCON,#10H ; TCON = 10H, TR0 = 1,G0 MOV PCON,#01H ; ENTER IDLE MODE (FOR ERASE OPERATION)	MOV TCON,#00H	; TCON = 00H , TR = 0 TIM0 STOP
MOV R6,#E0H MOV R7,#B1H MOV TL0,R6 MOV TH0,R7 ERASE_P_4K: MOV SFRCN,#22H MOV TCON,#10H SFRCN(C7H) = 22H ERASE 32K MOV TCON,#10H START IDLE MODE (FOR ERASE OPERATION) ************************************		
MOV R7,#B1H MOV TL0,R6 MOV TH0,R7 ERASE_P_4K: MOV SFRCN,#22H ; SFRCN(C7H) = 22H ERASE 32K MOV TCON,#10H ; TCON = 10H, TR0 = 1,GO MOV PCON,#01H ; ENTER IDLE MODE (FOR ERASE OPERATION) **BLANK CHECK MOV SFRCN,#0H ; READ 32KB APROM MODE MOV SFRAH,#0H ; START ADDRESS = 0H MOV R7,#FFH ; SET TIMER FOR READ OPERATION, ABOUT 1.5 μS. BLANK_CHECK_LOOP: SETB TR0 ; ENABLE TIMER 0 MOV PCON,#01H ; ENTER IDLE MODE MOV A,SFRFD ; READ ONE BYTE	MOV R6,#E0H	; SET WAKE-UP TIME FOR ERASE OPERATION, ABOUT 15 mS. DEPENDING
MOV TL0,R6 MOV TH0,R7 ERASE_P_4K: MOV SFRCN,#22H ; SFRCN(C7H) = 22H ERASE 32K MOV TCON,#10H ; TCON = 10H, TR0 = 1,GO MOV PCON,#01H ; ENTER IDLE MODE (FOR ERASE OPERATION) ** BLANK CHECK ** BLANK CHECK ** MOV SFRCN,#0H ; READ 32KB APROM MODE MOV SFRAH,#0H ; START ADDRESS = 0H MOV SFRAH,#0H ; START ADDRESS = 0H MOV R6,#FEH ; SET TIMER FOR READ OPERATION, ABOUT 1.5 μS. MOV R6,#FEH ; SET TIMER FOR READ OPERATION, ABOUT 1.5 μS. BLANK_CHECK_LOOP: SETB TR0 ; ENABLE TIMER 0 MOV PCON,#01H ; ENTER IDLE MODE MOV PCON,#01H ; ENTER IDLE MODE MOV A,SFRFD ; READ ONE BYTE		; ON USER'S SYSTEM CLOCK RATE.
MOV SFRCN,#22H MOV TCON,#10H MOV PCON,#01H ; TCON = 10H, TR0 = 1,GO MOV PCON,#01H ; ENTER IDLE MODE (FOR ERASE OPERATION)	MOV TL0,R6	
MOV TCON,#10H ; TCON = 10H, TR0 = 1,GO MOV PCON,#01H ; ENTER IDLE MODE (FOR ERASE OPERATION) * BLANK CHECK MOV SFRCN,#0H ; READ 32KB APROM MODE MOV SFRAH,#0H ; START ADDRESS = 0H MOV SFRAL,#0H MOV R6,#FEH ; SET TIMER FOR READ OPERATION, ABOUT 1.5 μS. MOV R7,#FFH MOV TL0,R6 MOV TH0,R7 BLANK_CHECK_LOOP: SETB TR0 ; ENABLE TIMER 0 MOV PCON,#01H ; ENTER IDLE MODE MOV A,SFRFD ; READ ONE BYTE	ERASE_P_4K:	
MOV PCON,#01H ; ENTER IDLE MODE (FOR ERASE OPERATION) * BLANK CHECK MOV SFRCN,#0H ; READ 32KB APROM MODE MOV SFRAH,#0H ; START ADDRESS = 0H MOV SFRAL,#0H MOV R6,#FEH MOV R6,#FEH MOV TL0,R6 MOV TH0,R7 BLANK_CHECK_LOOP: SETB TR0 ; ENABLE TIMER 0 MOV PCON,#01H ; ENTER IDLE MODE MOV A,SFRFD ; READ ONE BYTE		
 BLANK CHECK MOV SFRCN,#0H ; READ 32KB APROM MODE MOV SFRAH,#0H ; START ADDRESS = 0H MOV SFRAL,#0H MOV R6,#FEH ; SET TIMER FOR READ OPERATION, ABOUT 1.5 μS. MOV R7,#FFH MOV TL0,R6 MOV TH0,R7 BLANK_CHECK_LOOP: SETB TR0 ; ENABLE TIMER 0 MOV PCON,#01H ; ENTER IDLE MODE MOV A,SFRFD ; READ ONE BYTE 		
MOV SFRCN,#0H ; READ 32KB APROM MODE MOV SFRAH,#0H ; START ADDRESS = 0H MOV SFRAL,#0H ; SET TIMER FOR READ OPERATION, ABOUT 1.5 μS. MOV R7,#FFH ; SET TIMER FOR READ OPERATION, ABOUT 1.5 μS. MOV TL0,R6 MOV TH0,R7 BLANK_CHECK_LOOP: ; ENABLE TIMER 0 MOV PCON,#01H ; ENTER IDLE MODE MOV A,SFRFD ; READ ONE BYTE	,	**********************
MOV SFRAH,#0H MOV SFRAL,#0H MOV R6,#FEH MOV R7,#FFH MOV TL0,R6 MOV TH0,R7; SET TIMER FOR READ OPERATION, ABOUT 1.5 μS.BLANK_CHECK_LOOP: SETB TR0 MOV PCON,#01H MOV A,SFRFD; ENABLE TIMER 0 ENTER IDLE MODE ; READ ONE BYTE		***********************
MOV R6,#FEH ; SET TIMER FOR READ OPERATION, ABOUT 1.5 μS. MOV R7,#FFH MOV TL0,R6 MOV TH0,R7 BLANK_CHECK_LOOP: SETB TR0 ; ENABLE TIMER 0 MOV PCON,#01H ; ENTER IDLE MODE MOV A,SFRFD ; READ ONE BYTE	MOV SFRAH,#0H	
SETB TR0 ; ENABLE TIMER 0 MOV PCON,#01H ; ENTER IDLE MODE MOV A,SFRFD ; READ ONE BYTE	MOV R6,#FEH MOV R7,#FFH MOV TL0,R6	; SET TIMER FOR READ OPERATION, ABOUT 1.5 $\mu\text{S}.$
MOV PCON,#01H ; ENTER IDLE MODE MOV A,SFRFD ; READ ONE BYTE	BLANK_CHECK_LOOP:	
	MOV PCON,#01H MOV A,SFRFD	; ENTER IDLE MODE ; READ ONE BYTE

W78LE58/W78L058A winbond

INC SFRAL ; NEXT ADDRESS MOV A,SFRAL JNZ BLANK_CHECK_LOOP INC SFRAH MOV A,SFRAH CJNE A,#80H,BLANK_CHECK_LOOP ; END ADDRESS = 7FFFH JMP PROGRAM_32KROM

BLANK_CHECK_ERROR:

MOV P1.#F0H MOV P3,#F0H JMP \$

;* RE-PROGRAMMING 32KB APROM BANK

PROGRAM_32KROM:

, PROGRAM_32KROM: MOV DPTR,#0H MOV R2,#00H MOV R1,#00H MOV DPTR,#0H MOV SFRAH,R1 MOV SFRAH,R1 MOV SFRCN,#21H MOV R6,#BEH MOV R7,#FFH MOV TL0,R6 MOV TH0,R7	; THE ADDRESS OF NEW ROM CODE ; TARGET LOW BYTE ADDRESS ; TARGET HIGH BYTE ADDRESS ; EXTERNAL SRAM BUFFER ADDRESS ; SFRAH, TARGET HIGH ADDRESS ; SFRCN(C7H) = 21 (PROGRAM 32K) ; SET TIMER FOR PROGRAMMING, ABOUT 50 μS.			
PROG_D_32K:				
MOV SFRAL,R2 MOVX A,@DPTR	; SFRAL(C4H) = LOW BYTE ADDRESS ; READ DATA FROM EXTERNAL SRAM BUFFER. BY ACCORDING USER? ; CIRCUIT, USER MUST MODIFY THIS INSTRUCTION TO FETCH CODE			
MOV SFRFD,A MOV TCON,#10H MOV PCON,#01H INC DPTR	; SFRFD(C6H) = DATA IN ; TCON = 10H, TR0 = 1,GO ; ENTER IDLE MODE (PRORGAMMING)			
INC R2 CJNE R2,#0H,PROG INC R1 MOV SFRAH,R1	_D_32K			
CJNE R1,#80H,PRO	G_D_32K			
.*************************************				
; * VERIFY 32KB APROM BANK				
MOV R4,#03H MOV R6,#FEH MOV R7,#FFH MOV TL0,R6 MOV TH0,R7	; ERROR COUNTER ; SET TIMER FOR READ VERIFY, ABOUT 1.5 $\mu S.$			
MOV DPTR,#0H MOV R2,#0H MOV R1,#0H MOV SFRAH,R1 MOV SFRCN,#00H	; The start address of sample code ; Target low byte address ; Target high byte address ; SFRAH, Target high address ; SFRCN = 00 (Read ROM CODE)			


```
MOV SFRAL.R2
                    ; SFRAL(C4H) = LOW ADDRESS
   MOV TCON,#10H
                    ; TCON = 10H, TR0 = 1,GO
   MOV PCON,#01H
   INC R2
   MOVX A,@DPTR
   INC DPTR
   CJNE A, SFRFD, ERROR_32K
   CJNE R2,#0H,READ_VERIFY_32K
   INC R1
   MOV SFRAH,R1
   CJNE R1,#80H,READ_VERIFY_32K
;* PROGRAMMING COMPLETLY, SOFTWARE RESET CPU
MOV CHPENR,#87H
                    ; CHPENR = 87H
                   ; CHPENR = 59H
                    ; CHPCON = 83H, SOFTWARE RESET.
   MOV CHPENR,#59H
   MOV CHPCON,#83H
ERROR_32K:
   DJNZ R4, UPDATE_32K
                    ; IF ERROR OCCURS, REPEAT 3 TIMES.
                    ; IN-SYSTEM PROGRAMMING FAIL, USER'S PROCESS TO DEAL WITH IT.
    .
                                      .
               35
```

FEESE Winbond

13. REVISION HISTORY

VERSION	DATE	PAGE	REASONS FOR CHANGE
A2	November 2000		-
A3	April 19, 2005	32	Add Important Notice
A4	November 14, 2005	2	Add Lead-free(RoHS) parts
A5 October 2, 2006		Remove block diagram	
			Change operating frequency into 20MHz
A6	December 4, 2006	2	Remove all Leaded package parts

Winbond products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Further more, Winbond products are not intended for applications wherein failure of Winbond products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur.

Winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Winbond for any damages resulting from such improper use or sales.