

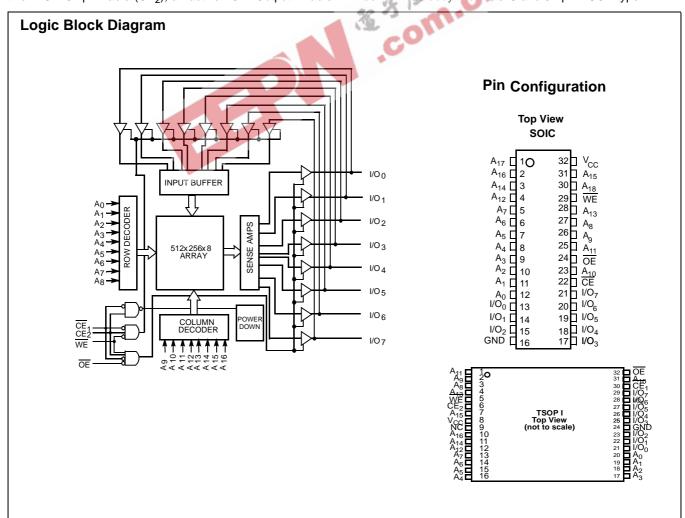
128K x 8 Static RAM

Features

- Voltage Range
 - -4.5V-5.5V
- · Low active power
 - Typical active current: 6 mA @ f = f_{max} (70 ns speed)
- · Low standby current
- · Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with CE₁, CE₂, and OE features
- · CMOS for optimum speed/power

Functional Description

The WCMA1008C1X is a high-performance CMOS static RAM organized as 128K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE₁), an active HIGH Chip Enable (CE₂), an active LOW Output Enable


 $(\overline{\text{OE}}),$ and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.

Writing to the device is accomplished by taking Chip Enable 1 ($\overline{\text{CE}}_1$) and Write Enable ($\overline{\text{WE}}$) inputs LOW and Chip Enable 2 ($\overline{\text{CE}}_2$) input HIGH. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A $_0$ through A $_1$ 6).

Reading from the device is accomplished by taking Chip Enable 1 ($\overline{\text{CE}_1}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) and Chip Enable 2 ($\overline{\text{CE}_2}$) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}_1$ HIGH or CE $_2$ LOW), the outputs are disabled ($\overline{\text{OE}}$ HIGH), or during a write operation ($\overline{\text{CE}}_1$ LOW, $\overline{\text{CE}}_2$ HIGH, and $\overline{\text{WE}}$ LOW)

The WCMA1008C1X is available in a standard 32-pin 450-mil-wide body width SOIC and 32-pin TSOP type I.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C Supply Voltage on V_{CC} to Relative GND –0.5V to +7.0V

DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to V_{CC} +0.5V DC Input Voltage^[1].....-0.5V to V_{CC} +0.5V Current into Outputs (LOW)20 mA Static Discharge Voltage......2001V (per MIL-STD-883, Method 3015)

Latch-Up Current>200 mA

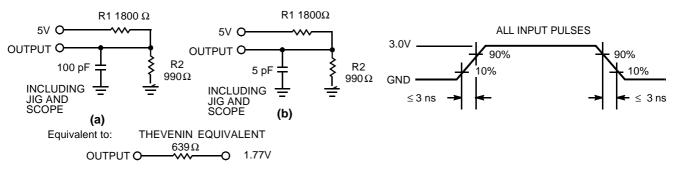
Product Portfolio

						3 15	Power Di	ssipation	
					- The	Operat	ing, Icc	Standb	y (I _{SB2})
		V _{CC} Range	•		- 次节	(f =1	max		
Product	Min.	Typ. ^[2]	Max.	Speed	Temp.	Typ. ^[2]	Max.	Typ. ^[2]	Max.
WCMA1008C1X	4.5 V	5.0V	5.5V	70 ns	Ind'I	6 mA	15 mA	4 μA	20 μΑ
VCWATOOCTA	4.5 V	3.0 V	3.5 V	55 ns	Thu P	7.5 mA	20 mA	4 μΛ	20 μΑ

Operating Range

Range	3	Ambient Temperature	V _{CC}
Industrial		–40°C to +85°C	4.5V-5.5V

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- 2. Typical values are measured at V_{CC} = 5V, T_A = 25°C, and are included for reference only and are not tested or guaranteed.


Electrical Characteristics Over the Operating Range

Param-				WCN	IA1008C1	X-55	WCMA1008C1X-70			
eter	Description	Test Co	Test Conditions		Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Units
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{C}$	_{oH} = – 1 mA	2.4			2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{C}$	_{oL} = 2.1 mA			0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.3	2.2		V _{CC} +0.3	V
V _{IL}	Input LOW Voltage			-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$		-1		+1	-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_1 \le V_0$ abled	_{CC} , Output Dis-	-1		+1	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	f=f _{MAX} =1/t _{RC}	I _{OUT} =0 mA V _{CC} = Max.,		7.5	20		6	15	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs		$_{I} \ge V_{IH}, CE_2 < V_{IH}$ $_{N} \le V_{IL}, f = f_{MAX}$		0.1	2		0.1	1	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{array}{c} \text{Max. V}_{\text{CC}}, \overline{\text{CE}} \\ \text{0.3V,CE}_2 < & \text{0.3} \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - & \text{0} \\ \text{0.3V, f} = & \text{0} \end{array}$	3	逐为	2.5	15			15	μА

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	9	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	9	pF

AC Test Loads and Waveforms

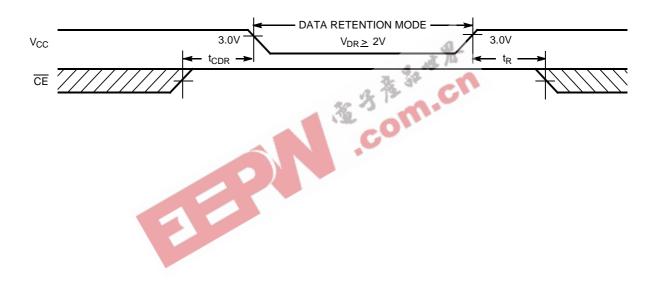
Note:

3. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics^[4] Over the Operating Range

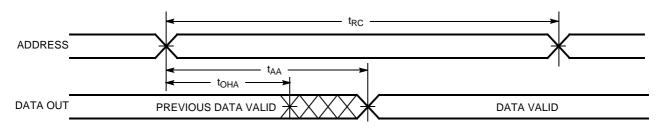
			55	7	70		
Parameter	Description	Min.	Max.	Min.	Max.	Unit	
READ CYCLE				.	•	•	
t _{RC}	Read Cycle Time	55		70		ns	
t _{AA}	Address to Data Valid		55		70	ns	
t _{OHA}	Data Hold from Address Change	5		5		ns	
t _{ACE}	CE ₁ LOW to Data Valid, CE ₂ HIGH to Data Valid		55		70	ns	
t _{DOE}	OE LOW to Data Valid		20		35	ns	
t _{LZOE}	OE LOW to Low Z ^[5]	0		0		ns	
t _{HZOE}	OE HIGH to High Z ^[5, 6]		20		25	ns	
t _{LZCE}	CE ₁ LOW to Low Z, CE ₂ HIGH to Low Z ^[5]			5		ns	
t _{HZCE}	CE ₁ HIGH to High Z, CE ₂ LOW to High Z ^[5, 6]		20	A TO	25	ns	
t _{PU}	CE ₁ LOW to Power-Up, CE ₂ HIGH to Power-Up	0	38 3 Th			ns	
t _{PD}	CE ₁ HIGH to Power-Down, CE ₂ LOW to Power-Down		55		70	ns	
WRITE CYCLE ^[7]							
t _{WC}	Write Cycle Time	55		70		ns	
t _{SCE}	CE ₁ LOW to Write End, CE ₂ HIGH to Write End	45		60		ns	
t _{AW}	Address Set-Up to Write End	45		60		ns	
t _{HA}	Address Hold from Write End	0		0		ns	
t_{SA}	Address Set-Up to Write Start	0		0		ns	
t _{PWE}	WE Pulse Width	45		50		ns	
t _{SD}	Data Set-Up to Write End	25		30		ns	
t _{HD}	Data Hold from Write End	0		0		ns	
t _{LZWE}	WE HIGH to Low Z ^[5, 6]	5		5		ns	
t _{HZWE}	WE LOW to High Z ^[6]		20		25	ns	

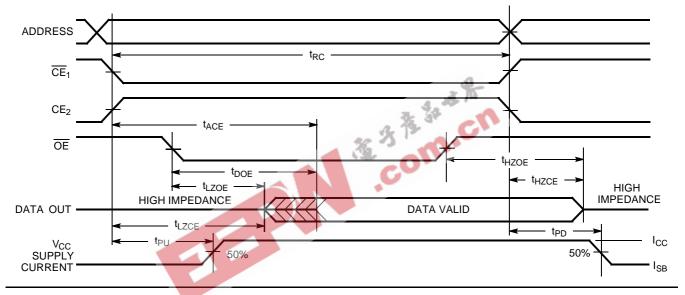
Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance.


At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZCE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZCE} , t_{HZCE} , and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured \pm 500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of \overline{CE}_1 LOW and \overline{CE}_2 HIGH, and \overline{WE} LOW. \overline{CE}_1 and \overline{WE} must be LOW and \overline{CE}_2 HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Тур.[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		2.0			V
I _{CCDR}	Data Retention Current	$\begin{array}{l} \frac{V_{CC} = V_{DR} = 3.0V,}{CE_1 \geq V_{CC} - 0.3V,}\\ CE_2 < 0.3V\\ V_{IN} \geq V_{CC} - 0.3V \text{ or,}\\ V_{IN} \leq 0.3V \end{array}$		1.5	20	μА
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R ^[8]	Operation Recovery Time		70			ns

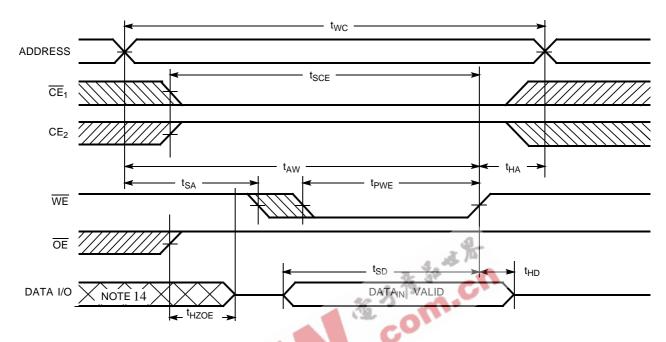

Data Retention Waveform



Switching Waveforms

Read Cycle No.1^[9, 10]

Read Cycle No. 2 (OE Controlled)[10, 11]



- Full Device operatin requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{cc(min)} ≥ 100 μs.
 Device is continuously selected. OE, CE₁ = V_{IL}, CE₂ = V_{IH}
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE₁ transition LOW and CE₂ transition HIGH.

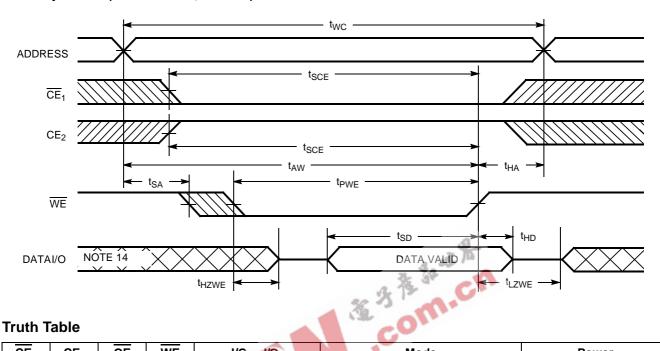


Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled)^[7. 12, 13]

Write Cycle No. 2 (CE₁ or CE₂ Controlled)^[7, 12, 13]

- 12. If \overline{CE}_1 goes HIGH and \overline{CE}_2 LOW simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.


 13. Data I/O is high-impedance if $\overline{OE} = V_{IH}$.

 14. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No.3 (WE Controlled, OE LOW)[12]

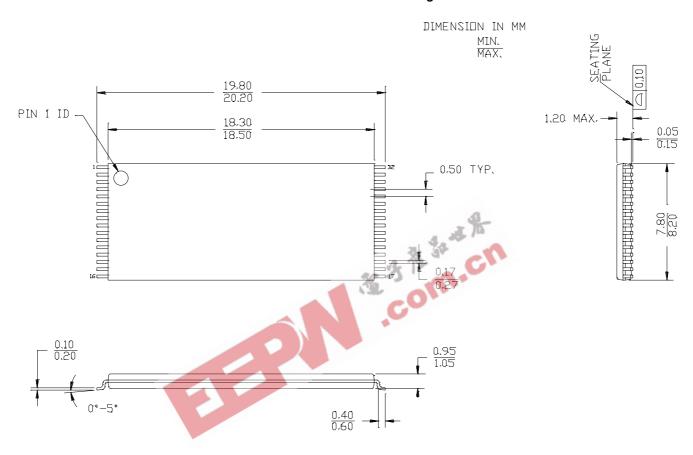
Truth Table

CE ₁	CE ₂	OE	WE	1/00-1/07	Mode	Power
Н	Х	Х	Х	High Z	Power-Down	Standby (I _{SB})
X	L	Χ	X	High Z	Power-Down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read	Active (I _{CC})
L	Н	Χ	4	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMA1008C1X-GF70	G32	32-Lead (450-Mil) Molded SOIC	
70	WCMA1008C1X-TF70	T32	32-Lead TSOP	Industrial
55	WCMA1008C1X-GF55	G32	32-Lead (450-Mil) Molded SOIC	industrial
33	WCMA1008C1X-TF55	T32	32-Lead TSOP	

Package Diagrams


32-Lead (450 MIL) Molded SOIC, G32

Package Diagrams (continued)

32-Lead Thin Small Outline Package T32

Document Title: WCMA1008C1X, 128K x 8 Static RAM							
REV.	Spec #	ECN#	Issue Date	Orig. of Change	Description of Change		
**	38-14022	115241	4/24/2002	MGN	New Datasheet		

