

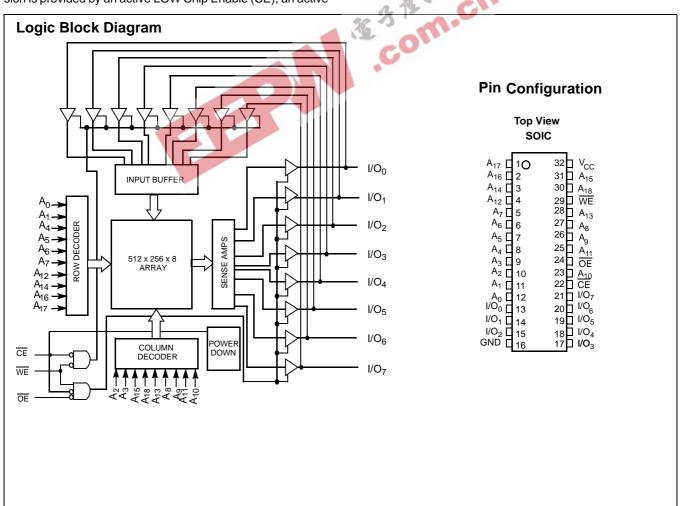
Features

- Voltage Range
 - -4.5V-5.5V
- Low active power
 - Typical active current: 2.5 mA @ f = 1 MHz
 - Typical active current: 12.5 mA @ f = f_{max}
- · Low standby current
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- CMOS for optimum speed/power

Functional Description

The WCMA4008C1X is a high-performance CMOS static RAM organized as 512K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (\overline{CE}), an active

512K x 8 Static RAM


LOW Output Enable (\overline{OE}) , and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 99% when deselected.

<u>Writing</u> to the device is accomplished by taking Chip Enable $\overline{(CE)}$ and Write Enable $\overline{(WE)}$ inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) HIGH for read. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in <u>a</u> high-impedance state when the <u>device</u> is deselected (CE HIGH), the <u>outputs are disabled</u> (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The WCMA4008C1X is available in a standard 32-pin 450-mil-wide body width SOIC.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage on V _{CC} to Relative GND –0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State $^{[1]}$ 0.5V to V_{CC} +0.5V
DC Input Voltage ^[1] 0.5V to V _{CC} +0.5V
Current into Outputs (LOW)20 mA
Static Discharge Voltage2001V (per MIL-STD-883, Method 3015)
Latch-Up Current>200 mA

Product Portfolio

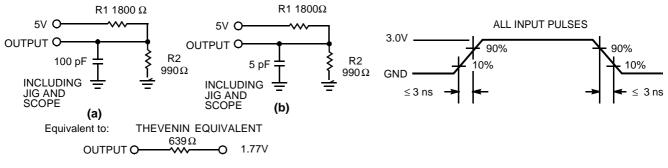
						3. 3 15	Power Di	ssipation	
					1 3	Operat	ing, Icc	Standb	y (I _{SB2})
	V _{CC} Range			26 3	f=i	max			
Product	Min.	Тур.	Max.	Speed	Temp.	Typ. ^[3]	Max.	Typ. ^[2]	Max.
WCMA4008C1X	4.5 V	5.0V	5.5V	70 ns	Ind'l	12.5 mA	20 mA	4 μΑ	20 µA

Operating Range

	Ambient	
Range	Temperature	V _{cc}
Industrial	-40°C to +85°C	4.5V–5.5V

Notes:

1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. 2. Typical values are measured at V_{CC} = 5V, T_A = 25°C, and are included for reference only and are not tested or guaranteed.


				w	CMA4008	C1X	
Parameter	Description	Test Cond	Test Conditions			Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -	- 1 mA	2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2$.1 mA			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.3	V
V _{IL}	Input LOW Voltage			-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$		-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_{CC}$, Output Disabled		-1		+1	μA
I _{CC}	V _{CC} Operating	$f = f_{MAX} = 1/t_{RC}$	I _{OUT} =0 mA		12.5	20	mA
	Supply Current	f = 1 MHz	V _{CC} = Max.,		2.5		mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \overline{CE} \geq V_{IH} \\ V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$				1.5	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{array}{c} \text{Max. } V_{CC}, \ \overline{CE} \geq V_{C} \\ V_{IN} \geq V_{CC} - 0.3 \text{V}, \text{ or} \end{array}$	2C - 0.3V, r V _{IN} ≤ 0.3V, f =0	Sile C	4	20	μΑ

Electrical Characteristics Over the Operating Range

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms

Note:

3. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics^[4] Over the Operating Range

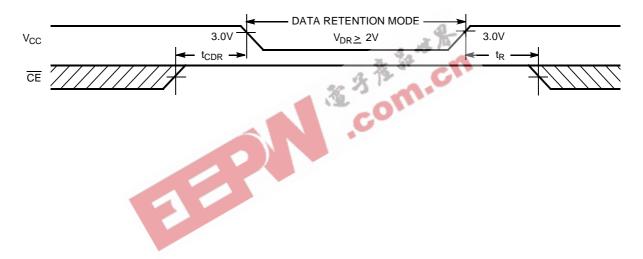
		WCMA4	008C1X	
Parameter	Description	Min.	Max.	Unit
READ CYCLE	· ·			
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[5]	5		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		25	ns
t _{LZCE}	CE LOW to Low Z ^[5]	10		ns
t _{HZCE}	CE HIGH to High Z ^[5, 6]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down	A Th	70	ns
WRITE CYCLE ^[7]	<u>*</u>	1 - N		
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	Write Cycle Time CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	55		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low Z ^[5]	5		ns
t _{HZWE}	WE LOW to High Z ^[5, 6]		25	ns

Notes:

Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance. 4.

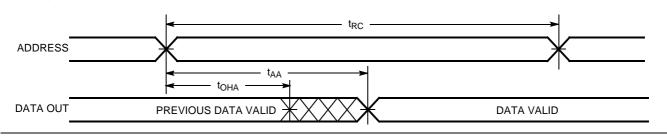
5.

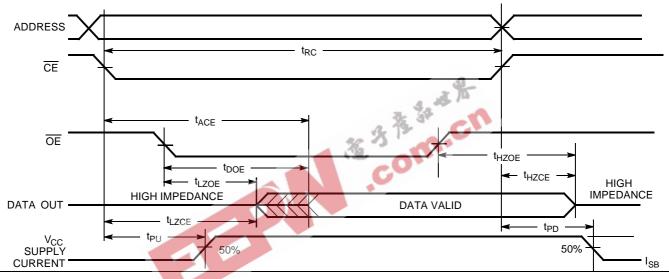
6.


At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. 7.

Parameter	Description	Conditions	Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V_{CC} for Data Retention		2.0			V
I _{CCDR}	Data Retention Current	No input may exceed $\begin{array}{l} V_{CC} + 0.3V \\ \hline V_{CC} = V_{DR} = 3.0V \\ \hline CE > V_{CC} - 0.3V \\ \hline V_{IN} > V_{CC} - 0.3V \\ \hline V_{IN} < 0.3V \end{array}$			20	μA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R ^[8]	Operation Recovery Time		t _{RC}			ns

Data Retention Characteristics (Over the Operating Range)

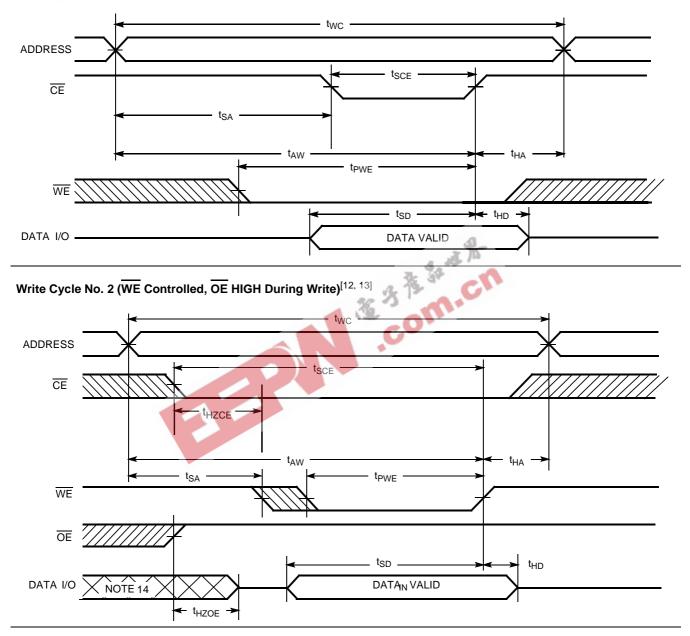

Data Retention Waveform



Switching Waveforms

Read Cycle No.1^[9, 10]

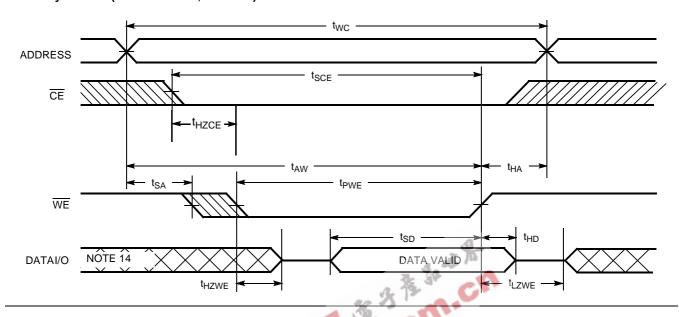
Read Cycle No. 2 (OE Controlled)^[10, 11]


Notes:

8. Full Device operatin requires line<u>ar V_{CC} ramp</u> from V_{DR} to V_{CC(min)} \ge 100 µs or stable at V_{cc(min)} \ge 100 µs. 9. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 10. WE is HIGH for read cycle. 11. Address valid prior to or coincident with \overline{CE} transition LOW.

Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)^[12]

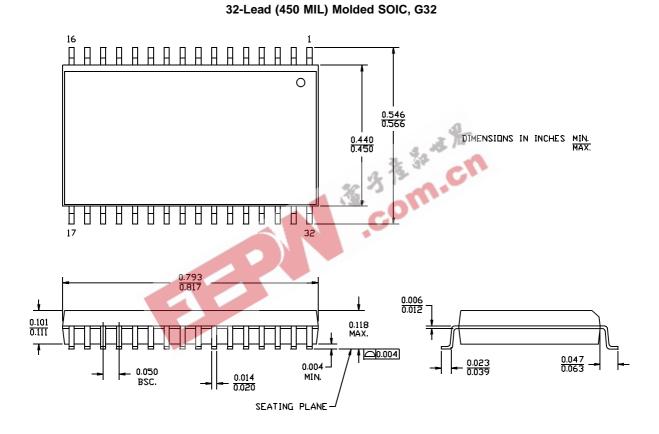

Notes:

- If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
 Data I/O is high-impedance if OE = V_{IH}.
 During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No.3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[12, 13]

Truth Table


CE	OE	WE	1/0 ₀ – 1/0 ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMA4008C1X-GF70	G32	32-Lead (450-Mil) Molded SOIC	Industrial

Package Diagrams

Document Title: WCMA4008C1X, 512K x 8 Static RAM								
REV. Spec # ECN # Issue Date Orig. of Change Description of Change								
**	38-14014	115231	4/24/2002	MGN	New Datasheet			

