9-Bit Odd/Even Parity **Generator/Checker** # **High-Performance Silicon-Gate CMOS** The MC74HC280 is identical in pinout to the LS280. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. This circuit consists of 9 data-bit inputs (A through I) and 2 outputs (Even Parity and Odd Parity) to allow both odd and even parity applications. Words greater than 9-bits can be accommodated by cascading other HC280 devices. This device can be used in systems utilizing the LS180 parity generator/ checker. Although the HC280 does not have expander inputs, the corresponding function is provided by an input at pin 4 and the absence of any connection at pin 3. This permits the HC280 to be substituted for the LS180 to produce a similar function, even if the HC280s are mixed with existing LS180s. NOTE: Pullup resistors must be used on the LS180 outputs to interface with the HC280. - Output Drive Capability: 10 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS, and TTL - Operating Voltage Range: 2 to 6 V - Low Input Current: 1 μA - In Compliance with the Requirements Defined by JEDEC Standard No. 7A - Chip Complexity: 226 FETs or 56.5 Equivalent Gates ## **LOGIC DIAGRAM** # MC74HC280 ### **N SUFFIX** PLASTIC PACKAGE CASE 646-06 D SUFFIX SOIC PACKAGE CASE 751A-03 #### ORDERING INFORMATION MC74HCXXXN Plastic MC74HCXXXD SOIC # **FUNCTION TABLE** | | Outputs | | | | |---|----------------|---------------|--|--| | Number of Inputs A through
I That are High | Even
Parity | Odd
Parity | | | | 0, 2, 4, 6, 8 | Н | L | | | | 1, 3, 5, 7, 9 | L | Н | | | 10/95 REV 6 ### MC74HC280 ### **MAXIMUM RATINGS*** | Symbol | Parameter | Value | Unit | |------------------|--|--------------------------------|------| | VCC | DC Supply Voltage (Referenced to GND) | - 0.5 to + 7.0 | V | | V _{in} | DC Input Voltage (Referenced to GND) | - 1.5 to V _{CC} + 1.5 | V | | V _{out} | DC Output Voltage (Referenced to GND) | -0.5 to V _{CC} + 0.5 | V | | l _{in} | DC Input Current, per Pin | ± 20 | mA | | l _{out} | DC Output Current, per Pin | ± 25 | mA | | ICC | DC Supply Current, V _{CC} and GND Pins | ± 50 | mA | | PD | Power Dissipation in Still Air Plastic DIP† SOIC Package† | 750
500 | mW | | T _{stg} | Storage Temperature | - 65 to + 150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP or SOIC Package) | 260 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. SOIC Package: - 7 mW/°C from 65° to 125°C | For high fro | SOIC Package: - 7 mW/°C from 65° to 125°C
quency or heavy load considerations, see Chapter 2 of the | o Motoro | Jo High | Snood | CMOS Data Book (DI 120/D) | |------------------------------------|--|--------------|--------------------|-------|---------------------------| | ŭ | ENDED OPERATING CONDITIONS | e Wotorc | na r ligit | Speed | GWOS Data BOOK (DE129/D). | | Symbol | Parameter | Min | Max | Unit | | | VCC | DC Supply Voltage (Referenced to GND) | 2.0 | 6.0 | V | | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | 0 | Vcc | V | | | TA | Operating Temperature, All Package Types | - 5 5 | + 125 | °C | | | t _r , t _f | Input Rise and Fall Time $V_{CC} = 2.0 \text{ V}$ (Figure 1) $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ | 0 0 | 1000
500
400 | ns | | | I | | 1 ′ | | | | ## DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | Guaranteed Limit | | mit | | | |-----------------|---|--|-------------------|--------------------|--------------------|--------------------|------| | Symbol | Parameter | Test Conditions | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | VIH | Minimum High-Level Input
Voltage | $V_{Out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{Out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | V | | V _{IL} | Maximum Low–Level Input
Voltage | $V_{Out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{Out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 0.3
0.9
1.2 | 0.3
0.9
1.2 | 0.3
0.9
1.2 | V | | VOH | Minimum High-Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \ \mu\text{A}$ | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | V | | | | $V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{Out}} \le 4.0 \text{ mA} $ $ I_{\text{out}} \le 5.2 \text{ mA}$ | 4.5
6.0 | 3.98
5.48 | 3.84
5.34 | 3.70
5.20 | | | VOL | Maximum Low-Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | | | | $V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{out}} \le 4.0 \text{ mA} $
$ I_{\text{out}} \le 5.2 \text{ mA}$ | 4.5
6.0 | 0.26
0.26 | 0.33
0.33 | 0.40
0.40 | | | l _{in} | Maximum Input Leakage Current | V _{in} = V _{CC} or GND | 6.0 | ± 0.1 | ± 1.0 | ± 1.0 | μΑ | | lcc | Maximum Quiescent Supply
Current (per Package) | V _{in} = V _{CC} or GND
I _{out} = 0 µA | 6.0 | 8 | 80 | 160 | μА | NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). **MOTOROLA** 2 ^{*} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. [†]Derating — Plastic DIP: - 10 mW/°C from 65° to 125°C ## AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$) | | | | Gu | Guaranteed Limit | | | |--|--|-------------------|-----------------|------------------|-----------------|------| | Symbol | Parameter | v _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Data Inputs to Parity Outputs (Figures 1 and 2) | 2.0
4.5
6.0 | 205
41
35 | 255
51
43 | 310
62
53 | ns | | t _{TLH} ,
t _{THL} | Maximum Output Transition Time, Any Output (Figures 1 and 2) | 2.0
4.5
6.0 | 75
15
13 | 95
19
16 | 110
22
19 | ns | | C _{in} | Maximum Input Capacitance | _ | 10 | 10 | 10 | pF | #### NOTES: - 1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). - 2. Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). | | | Typical @ 25°C, V _{CC} = 5.0 V | | |-----------------|--|---|----| | C _{PD} | Power Dissipation Capacitance (Per Package)* | 60 | pF | ^{*}Used to determine the no–load dynamic power consumption: P_D = C_{PD} V_{CC}²f + I_{CC} V_{CC}. For load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). #### PIN DESCRIPTIONS 3 #### **INPUTS** # A, B, C, D, E, F, G, H, I (Pins 8-13, 1, 2, 4) Nine-bit data-word inputs. The data word placed on these pins is checked for even or odd parity. ### OUTPUTS # Even Parity (Pin 5) Even-parity output. This pin goes high if the data word has even parity and low if the data word has odd parity. ### **Odd Parity (Pin 6)** Odd–parity output. This pin goes high if the data word has odd parity and low if the data word has even parity. Figure 1. Switching Waveforms * Includes all probe and jig capacitance Figure 2. Test Circuit MOTOROLA MOTOROLA 4 ### **TYPICAL APPLICATIONS** #### **OUTLINE DIMENSIONS** - LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM - MATERIAL CONDITION. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. - DIMENSION B DOES NOT INCLUDE MOLD - ROUNDED CORNERS OPTIONAL | | INC | HES | MILLIN | IETERS | |-----|-------|-----------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.715 | 0.770 | 18.16 | 19.56 | | В | 0.240 | 0.260 | 6.10 | 6.60 | | С | 0.145 | 0.185 | 3.69 | 4.69 | | D | 0.015 | 0.021 | 0.38 | 0.53 | | F | 0.040 | 0.070 | 1.02 | 1.78 | | G | 0.100 | BSC | 2.54 | BSC | | Н | 0.052 | 0.095 | 1.32 | 2.41 | | J | 0.008 | 0.015 | 0.20 | 0.38 | | K | 0.115 | 0.135 | 2.92 | 3.43 | | L | 0.300 | 0.300 BSC | | BSC | | М | 0° | 10° | 0° | 10° | | N | 0.015 | 0.039 | 0.39 | 1.01 | - DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION - MAXIMUM MOLD PROTRUSION 0.15 (0.006) - PER SIDE DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | MILLIMETERS INCHES | | | | | | | |--------------------|--------|-------|-----------|-------|--|--| | | MILLIM | ETERS | | HES | | | | DIM | MIN | MAX | MIN | MAX | | | | Α | 8.55 | 8.75 | 0.337 | 0.344 | | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | | С | 1.35 | 1.75 | 0.054 | 0.068 | | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | | F | 0.40 | 1.25 | 0.016 | 0.049 | | | | G | 1.27 | BSC | 0.050 BSC | | | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | | | K | 0.10 | 0.25 | 0.004 | 0.009 | | | | M | 0° | 7° | 0° | 7° | | | | Р | 5.80 | 6.20 | 0.228 | 0.244 | | | | R | 0.25 | 0.50 | 0.010 | 0.019 | | | Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and 🔼 are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912: Phoenix, Arizona 85036, 1-800-441-2447 MFAX: RMFAX0@email.sps.mot.com -TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298