

Precision, Dual-Channel Difference Amplifier

AD8270

Preliminary Technical Data

FEATURES

With no external resistors: Difference Amplifier: Gains: 0.5, 1, 2 Inverting Amplifier: Gains: 0.5, 1, 2 Noninverting Amplifier: Gains: 1.5, 2, 3 Set reference voltage at 0, +Vs/2, or +Vs **Excellent AC Specifications** 10 MHz bandwidth 30V/us slew rate **Low Distortion** -90 dBc @ 100 kHz, 20Vpp, 600 Ω load **High Accuracy DC Performance** 0.05% gain accuracy 10 ppm gain drift 400 uV offset voltage 80 dB CMRR Two channels in small 4 mm × 4 mm LFCSP Supply current: 2.5 mA per channel Supply range: ±2.5 V to ±18 V

APPLICATIONS

Instrumentation Amplifier Building Block Level Translator **Automatic Test Equipment High Performance Audio Sin/Cos Encoders**

FUNCTIONAL BLOCK DIAGRAM

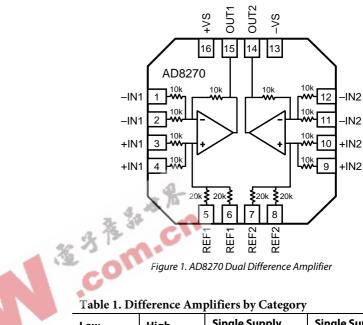


Figure 1. AD8270 Dual Difference Amplifier

Table 1. Difference Amplifiers by Category

High Voltage	Single Supply Uni-directional	Single Supply Bi-directional
AD628	AD8202	AD8205
AD629	AD8203	AD8206
AD8212		AD8210
	Voltage AD628 AD629	VoltageUni-directionalAD628AD8202AD629AD8203

GENERAL DESCRIPTION

The AD8270 is a low distortion, dual-channel amplifier with internal gain setting resistors. With no external components, it can be configured as a high performance difference amplifier (G=0.5, 1, or 2), inverting amplifier (G=0.5, 1, or 2) or noninverting amplifier (G=1.5, 2, or 3).

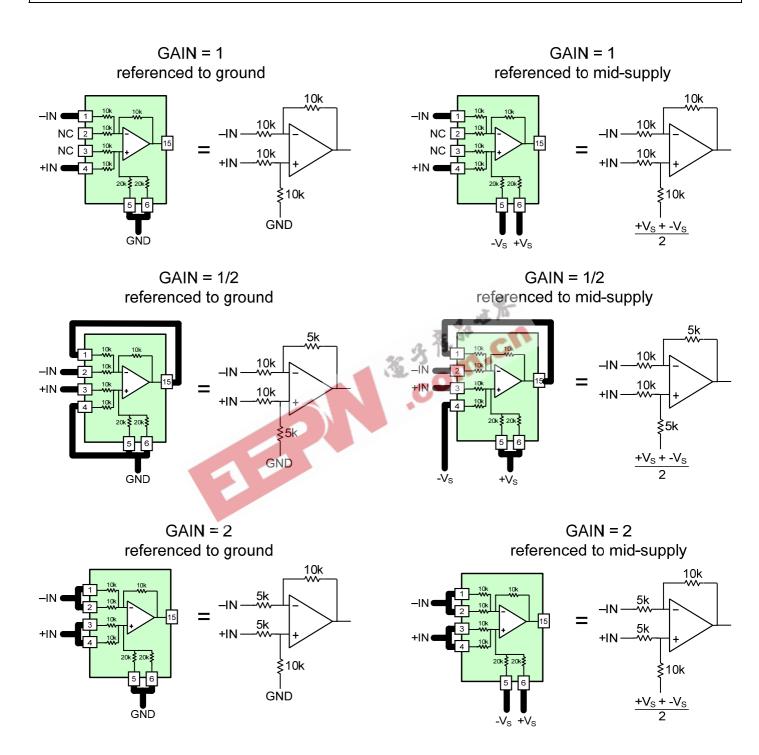
The AD8270 is the first dual difference amplifier in the small 4 mm × 4mm LFCSP. It requires the same board area as a typical single difference amplifier. The smaller package allows a 2X increase in channel density and a lower cost per channel, all with no compromise in performance.

The AD8270 operates on both single and dual supplies and only requires 2.5 mA maximum supply current for both amplifiers. It is specified over the industrial temperature range of -40°C to +85°C and is fully RoHS compliant.

Rev. PrA

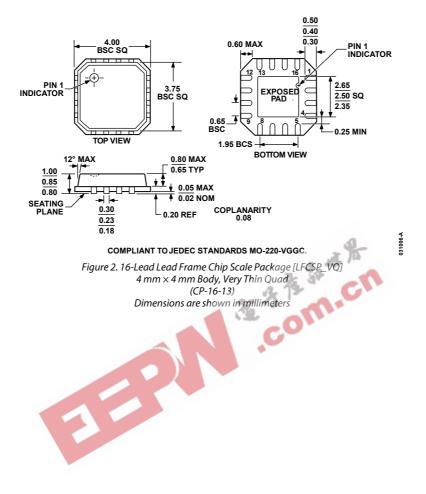
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com ©2007 Analog Devices, Inc. All rights reserved. Fax: 781.461.3113


SPECIFICATIONS

 $V_S = \pm 15$ V, $V_{REF} = 0$ V, $T_A = 25^{\circ}$ C, G = 1, $R_L = 2$ k Ω , unless otherwise noted.

Table 2.


Parameter		G = 1/2				G = 1		G = 2			
	Conditions	Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Мах	Unit
DYNAMIC PERFORMANCE											
Bandwidth			15			10			5		MHz
Slew Rate			30			30			30		V/µs
Settling Time to 0.01%	10V Step on output		700			800			850		ns
Settling Time to 0.001%	10V Step on output		800			900			950		ns
NOISE/DISTORTION											
Harmonic Distortion	f = 1 kHz, V _{OUT} = 20 Vpp		100			100			100		dBc
	f = 10 kHz, V _{OUT} = 20 Vpp		100			100			100		dBc
	f = 100 kHz, V _{OUT} = 20 Vpp		90			90			90		dBc
Output Voltage Noise	f = 0.1 Hz to 10 Hz										μV p-p
(referred to input)						- 4	-				
	f = 1 kHz		45		4	30			16		nV/√Hz
					74 S						
GAIN											
Gain Error				0.05			0.05			0.05	%
Gain Drift			1	10		1	10		1	10	ppm/°0
Gain Nonlinearity		4	10	40		10	40		10	40	ppm
INPUT CHARACTERISTICS											
Offset			100	400		100	400		100	400	μV
Overtemperature											μV
Drift			2	8		2	8		2	8	μV/°C
Common Mode Rejection	DC to 10 kHz	74	94		80	100		86	106		dB
Ratio											
Power Supply Rejection	DC to 10 kHz										dB
Ratio											
Input Voltage Range		-15.4		15.4	-15.4		15.4	-15.4		15.4	v
Impedance											
Differential			20			20			10		kΩ
Common Mode			7.5			10			7.5		kΩ
OUTPUT CHARACTERISTICS											
Output Swing		-13.5			-13.5			-13.5			V
	-40°C <t<sub>A<85°C</t<sub>	-13			-13			-13			V
Short circuit current limit			60			60			60		mA
POWER SUPPLY			25	2		25	2		25	2	
Supply Current			2.5	3		2.5	3		2.5	3	mA
(per Amplifier)	-40°C <t<sub>A<85°C</t<sub>		2	Λ		3	4		3	4	mA
			3	4		5	4		5	4	шА

Preliminary Technical Data

AD8222

OUTLINE DIMENSIONS

©2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR06979-0-8/07(PrA)

www.analog.com

Rev. PrA | Page 4 of 4