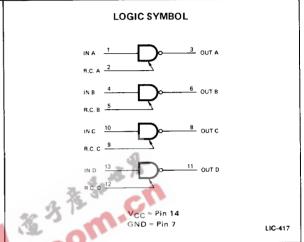
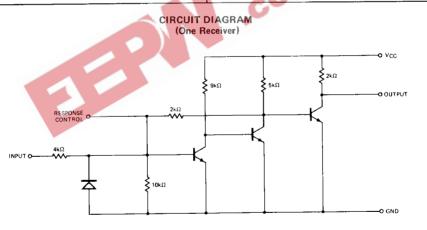
Am2617

Quad RS-232C Line Receiver

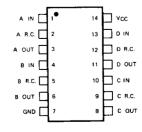

Distinctive Characteristics


- Full military temperature range
- Compatible with EIA specification RS-232C
- Input signal range ± 30 volts

- Guaranteed input thresholds over full military temperature range
- 100% reliability assurance testing in compliance with MIL-STD-883
- Includes response control input and built-in hysterisis

FUNCTIONAL DESCRIPTION

The Am2617 is a guad line receiver whose electrical characteristics conform to EIA specification RS-232C. Each receiver has a single data input that can accept signal swings of up to $\pm 30 \text{V}$. The output of each receiver is TTL/DTL compatible, and includes a $2k\Omega$ resistor pull-up to V_{CC}. An internal feedback resistor causes the input to exhibit hysterisis so that AC noise immunity is maintained at a high level even near the switching thresholds. For example, at 25°C when a receiver is in a LOW state on the output, the input may drop as LOW as 1.25 volts without affecting the output. The device is guaranteed to switch to the HIGH state when the input voltage is below 0.75V. Once the output has switched to the HIGH state, the input may rise to 1.75V without causing a change in the output. The Am2617 is guaranteed to switch to a LOW output when its input reaches 2.25V. Because of this hysterisis in switching thresholds, the device can receive signals with superimposed noise or with slow rise and fall times without generating oscillations on the output. The threshold levels may be offset by a constant voltage by applying a DC bias to the response control input. A capacitor added to the response control input will reduce the frequency response of the receiver for applications in the presence of high frequency noise spikes. The companion line driver is the Am2616.



ORDERING INFORMATION

rature Order nge Number
+75°C AM2617PC
+75°C AM2617DC
+75°C AM2617XC
+125°C AM2617DM
+125°C AM2617FM
+125°C AM2617XM

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-419

LIC-418

MAXIMIM RATINGS (Above which the useful life may be impaired)

Storage Temperature	−65°C to +175°C
Temperature (Ambient) Under Bias	−55°C to +125°C
Supply Voltage to Ground Potential (Pin 14 to Pin 7) Continuous	−0.5 V to +10 V
DC Voltage Applied to Outputs for High Output State	−0.5 V to +V _{CC} max.
Input Signal Range	-30 V to +30 V
Output Current, Into Outputs	30 mA
DC Input Current	Defined by Input Voltage Limits

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

 $T_A = 0^{\circ}C \text{ to } +75^{\circ}C$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$

 $V_{CC} = 5.0 V \pm 5\%$ $V_{CC} = 5.0 V \pm 10\%$

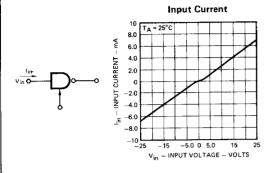
Response control pin open.

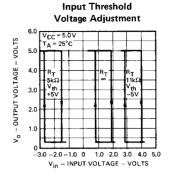
Parameters	Description	Test Conditions	Min.	Typ. (Note 1)	Max.	Units	
v _{OH}	Output HIGH Voltage	I _{OH} = -0.5 mA, V _{IN} = 0.4 V or open	2.4	4.0		Volts	
VOL	Output LOW Voltage	I _{OL} = 10 mA, V _{IN} = 3.0 V		0.2	0.45	Volts	
IIL	Input LOW Current	V _{1N} = -3.0 V	-0.43			mA	
		V _{IN} = -25 V	-3.6		-8.3		
I _{IH} Input H		V _{IN} = +3.0 V	0,43			mA	
	Input HIGH Current	V _{IN} = +25 V	3.6		8.3		
Isc	Output Shart Circuit Current	V _{IN} = 0.0 V, V _{OUT} = 0.0 V	1.9	2.5	3.8	mA	
I _{CC}	Power Supply Current	V _{CC} = MAX.		20	26	mA	

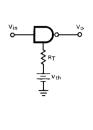
Note 1. Typical Limits are at V_{CC} = 5.0 V, 25° C ambient and maximum loading,

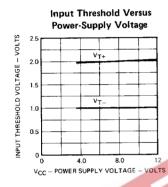
Threshold Characteristics (Note 2)

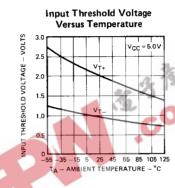
Parameters	Description	Test Conditions	T_{A}	Min.	(Note 1)	Max.	Units
V _{T+}	Positive-Going Threshold Voltage	V _{OL} = 0.45V, V _{CC} = 5.0V	−55°C	2.3		3.1	Volts
			0°C	1.9		2.5	
			25° C	1.75	2.0	2.25	
			75°C	1.45		1.90	
			125°C	1,20		1.65	
v _T _	Negative-Going Threshold Voltage VOH = 2.5V, VC		−55°C	0.85		1.65	
			0°C	0.75		1.40	
		VOH = 2.5V, VCC = 5.0V	25° C	0.75	0.95	1,25	Volts
			75°C	0.60		1.10	
			125°C	0.50		0.95	

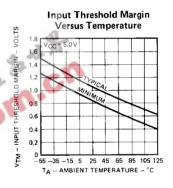

Notes: 1. Typical Limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.


2. The input threshold margin for the device is greater than the voltage computed as the V_{T+}-V_{T-} value. For the minimum value see the input threshold margin versus temperature graph.


Switching Characteristics (T_A = 25°C, response control pin open, C_L = 15 pF)


Parameters	Description	Test Conditions	Min.	Тур.	Max.	Units
tPLH	Delay from Input LOW to Output HIGH	R _L = 3.9 kΩ		25	85	ns
tPHL	Delay from Input HIGH to Output LOW	R _L = 390 Ω		25	50	ns
t.	Output Rise Time (10% to 90%)	$R_L = 3.9 \text{ k}\Omega$		120	175	ns
t _f	Output Fall Time (90% to 10%)	R _L = 390 Ω		10	20	ns


TYPICAL CHARACTERISTICS

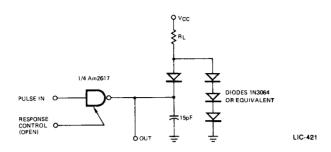


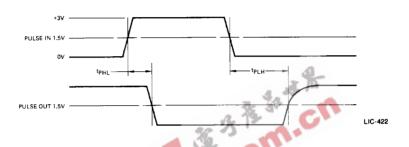
LIC-420

DEFINITION OF TERMS

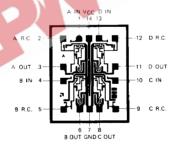
FUNCTIONAL TERMS

Response Control Pin A pin available on each receiver that allows the user to set the switching thresholds and frequency response of the receiver.


Threshold Voltage The voltage level on the input that will cause the output to change state. Because the device exhibits hysterisis, the LOW level input threshold is different from the HIGH level


input threshold. Both thresholds can be moved by applying a bias to the response control pin.

RS-232C A specification of the Electronic Industries Association that defines the electrical characteristics of data signals transmitted between two pieces of digital equipment.


Input Signal Range The permitted range of DC voltages that can be applied to the receiver input without damage to the device.

SWITCHING TIME TEST CIRCUIT & WAVEFORMS

Metallization and Pad Layout

DIE SIZE 0.047" X 0.059"