Advanced Analog Circuits Data Sheet

LOW POWER QUAD OPERATIONAL AMPLIFIERS

AZ324

General Description

The AZ324 consists of four independent, high gain and internally frequency compensated operational amplifiers. It is specifically designed to operate from a single power supply. Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltages.

The AZ324 series are compatible with industry standard 324.

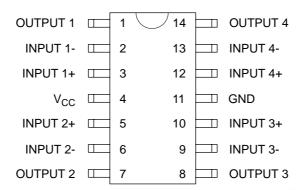
The AZ324 series are available in 2 Packages: DIP-14 and SOIC-14.

Features

- Internally Frequency Compensated for Unity
- Large Voltage Gain: 100dB (Typical)
- Low Input Bias Current: 20nA (Typical)
- Low Input Offset Voltage: 2mV (Typical)
- Low Supply Current: 0.5mA (Typical)
- Wide Power Supply Voltage Range:

Single Supply: 3V to 18V Dual Supplies: ±1.5V to ±9V

- Input Common Mode Voltage Range Includes Ground
- Large Output Voltage Swing: 0V to V_{CC}-1.5V
- Power Drain Suitable for Battery Operation


Figure 1. Package Types of AZ324

AZ324

Pin Configuration

M Package/P Package (SOIC-14/DIP-14)

Top View

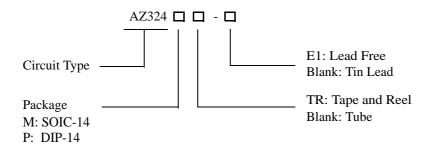

Figure 2. Pin Configuration of AZ324 **Functional Block Diagram** 100μΑ Q6 Сс ≥Rsc OUTPUT INPUT+ o Q13 Q12

Figure 3. Functional Block Diagram of AZ324 (Each Amplifier)

AZ324

Ordering Information

1

Package	Temperature	Part Number		Mark	Packing Type	
	Range	Tin Lead	Lead Free	Tin Lead	Lead Free	1 acking Type
SOIC-14	-40 to 85 °C	AZ324M	AZ324M-E1	AZ324M	AZ324M-E1	Tube
		AZ324MTR	AZ324MTR-E1	AZ324M	AZ324M-E1	Tape & Reel
DIP-14	-40 to 85 °C	AZ324P	AZ324P-E1	AZ324P	AZ324P-E1	Tube

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant.

Advanced Analog Circuits Data Sheet

LOW POWER QUAD OPERATIONAL AMPLIFIERS

AZ324

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit
Power Supply Voltage	V _{CC}	20		V
Differential Input Voltage	V_{ID}	20		V
Input Voltage	V _{IC}	-0.3 to 20		V
Input Current (V _{IN} <-0.3V) (Note 2)		50		mA
Output Short Circuit to Ground (One Amplifier) $V_{CC} \le 12V$ and $T_A = 25^{\circ}C$ (Note 3)		Continuous		
Power Dissipation (T _A =25°C)	P_{D}	DIP SOIC	1130 800	mW
Operating Junction Temperature	T_{J}	150		°C
Storage Temperature Range	T_{STG}	-65 to 150		°C
Lead Temperature (Soldering, 10 Seconds)	T _{LEAD}	260		°C

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device under these conditions is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3V (at $25^{\circ}C$)

Note 3: Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40mA independent of the magnitude of V_{CC} . At values of supply voltage in excess of +12V, continuous short circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{CC}	3	18	V
Ambient Operating Temperature Range	T _A	-40	85	°C

Advanced Analog Circuits Data Sheet

Electrical Characteristics

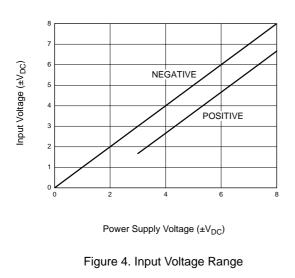
Operating Conditions: V_{CC} =5V, GND=0V, T_A =25 o C unless otherwise specified.

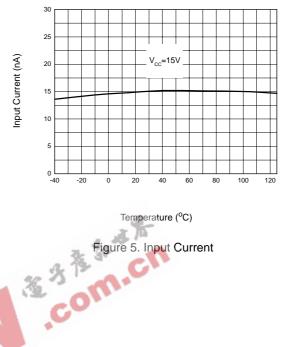
LOW POWER QUAD OPERATIONAL AMPLIFIERS

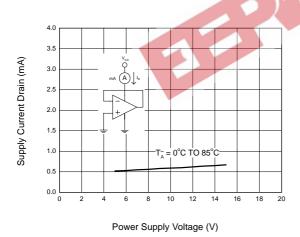
Parameter		Symbol	Test Conditions		Min	Тур	Max	Unit
Input Offset Voltage		V _{IO}	$V_{O}=1.4V, R_{S}=0\Omega, V_{CC}=5V \text{ to } 15V$			2	5	mV
Input Bias Current (Note 4)		I _{BIAS}	I _{IN} + or I _{IN} -, V _{CM} =0V			20	200	nA
Input Offset Current		I _{IO}	I _{IN} + - I _{IN} -, V _{CM} =0V			5	50	nA
Input Common Mode Voltage Range (Note 5)		V _{IR}	V _{CC} =15V		0		V _{CC} -1.5	V
Supply Current		I _{CC}	range on all OP Amps	V _{CC} =15V		1	2	- mA
				V _{CC} =5V		0.5	1.2	
Large Signal Voltage Gain		G _V	V_{CC} =15V, R_L ≥ 2k Ω , V_O =1V to 11V		85	100		dB
Common Mode Rejection Ratio		CMRR	DC, V _{CC} =15V, V _{CM} =0V to (V _{CC} -1.5)V		65	85		dB
Power Supply Rejection Ratio		PSRR	V _{CC} =5V to 15V		70	90		dB
Channel Separation (Note 6)		CS	f=1KHz to 20KHz (Input Referred)			-120		dB
	Source	I _{SOURCE}	V_{IN} +=1V, V_{IN} -=0V, V_{CC} =15V	20	45		mA	
Output Current	Sink	I _{SINK}	V_{IN} +=0V, V_{IN} -=1V, V_{CC} =15V	, V _O =2V	10	20		mA
			V_{IN} +=0V, V_{IN} -=1V, V_{CC} =15V, V_{O} =0.2V		12	50		μΑ
Output Short Circuit to Ground		I _{SC}	V _{CC} =15V			45	60	mA
Output Voltage Swing		V _{OH}	V_{CC} =15V, R_L =2k Ω		12			X 7
			V_{CC} =15V, R_L =10k Ω		12.5	13.5		V
		V _{OL}	V_{CC} =5V, R_L =10k Ω		5	20	mV	

Note 4: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

Note 5: The input common-mode voltage of either input signal voltage should not be allowed to go negatively by more than 0.3V (at 25° C). The upper end of the common-mode voltage range is $_{VCC}$ -1.5V (at 25° C), but either or both inputs can go to +18V without damages, independent of the magnitude of the V_{CC} .


Note 6: Due to proximity of external components, insure that coupling is not originating via stray capacitors between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.


AZ324


AZ324

Typical Performance Characteristics

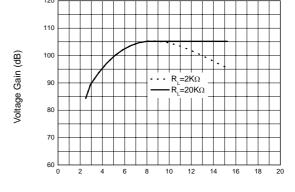
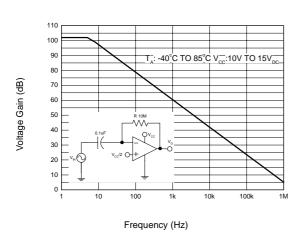
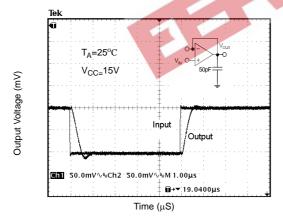


Figure 6. Supply Current


Figure 7. Voltage Gain

Power Supply Voltage (V)


AZ324

Typical Performance Characteristics (Continued)

Output Voltage (V) V_{CC}=15V $R_L=2K\Omega$ Input Voltage (V) **©h1** 1.00 V %Ch2 1.00 V %M 4.00µs Figure 9. Voltage Follower Pulse Response

Figure 8. Open Loop Frequency Response

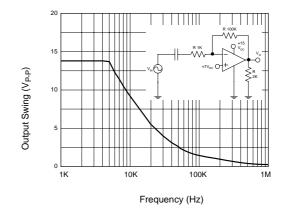


Figure 10. Voltage Follower Pulse Response (Small Signal)

Figure 11. Large Signal Frequency Response

AZ324

Typical Performance Characteristics (Continued)

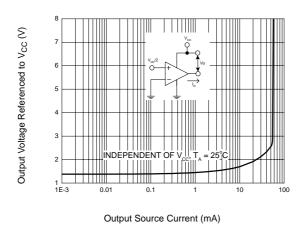
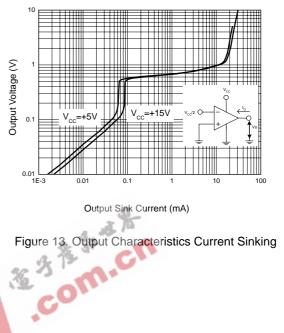



Figure 12. Output Characteristics Current Sourcing

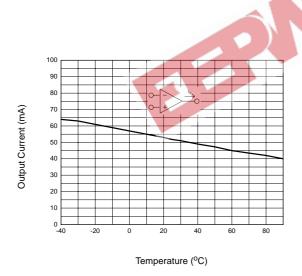
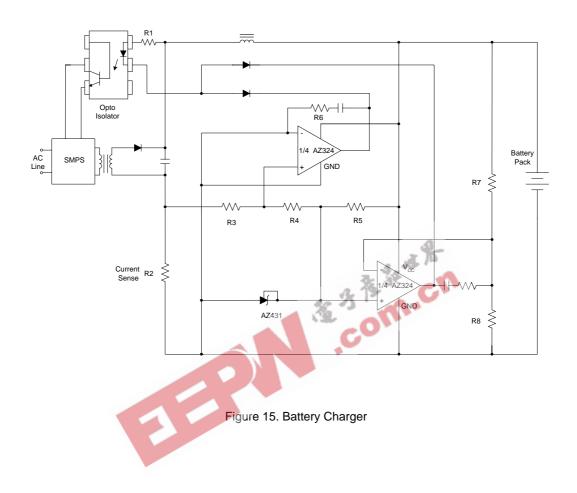



Figure 14. Current Limiting

AZ324

Typical Applications

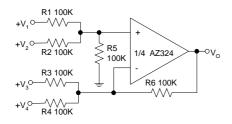


Figure 16. DC Summing Amplifier

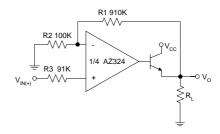


Figure 17. Power Amplifier

AZ324

Typical Applications (Continued)

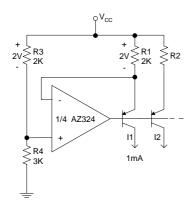
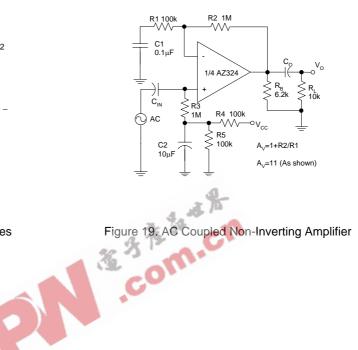



Figure 18. Fixed Current Sources

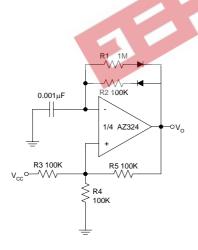
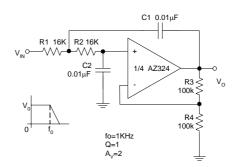
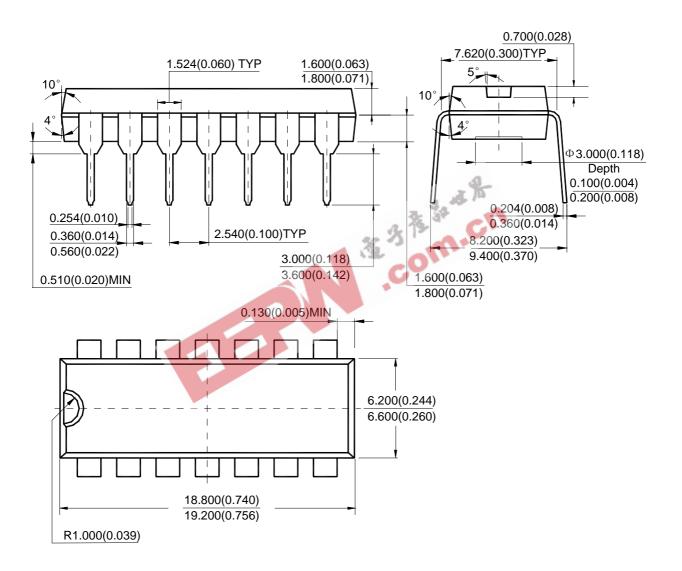


Figure 20. Pulse Generator

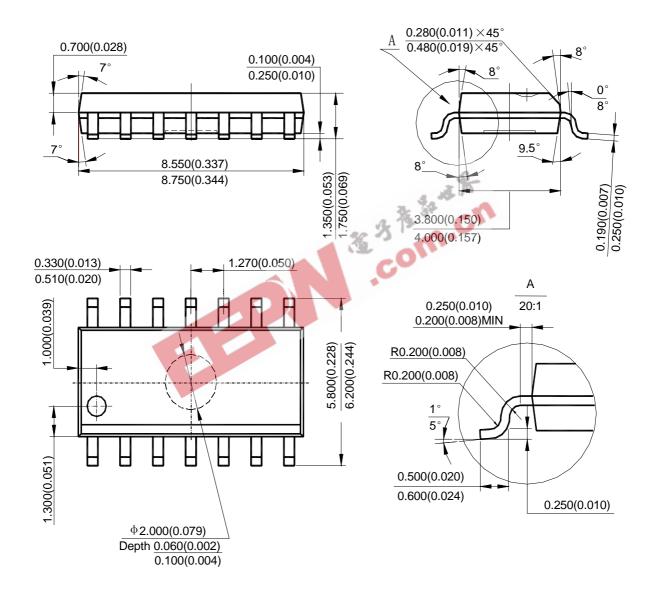



Figure 21. DC Coupled Low-Pass RC Active Filter

AZ324

Mechanical Dimensions

DIP-14 Unit: mm(inch)



AZ324

Mechanical Dimensions (Continued)

SOIC-14 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

BCD Semiconductor Manufacturing Limited

- Wafer Fab Shanghai SIM-BCD Semiconductor Manufacturing Limited 800, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. Shenzhen Office Advanced Analog Circuits (Shanghai) Corporation Shenzhen Office 27B, Tower C, 2070, Middle Shen Nan Road, Shenzhen 518031, China Tel: +86-755-8368 3987, Fax: +86-755-8368 3166

BCD Semiconductor Manufacturing Limited

- IC Design Group Advanced Analog Circuits (Shanghai) Corporation 8F, Zone B, 900, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6495 9539, Fax: +86-21-6485 9673

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Tel: +886-2-2656 2808, Fax: +886-2-2656 2806

USA Office **BCD Semiconductor Corporation** 3170 De La Cruz Blvd., Suite 105, Santa Clara, CA 95054-2411, U.S.A Tel: +1-408-988 6388, Fax: +1-408-988 6386