

·Com.cn Performance, High Reliability 150 °C

Series/Type: B45196P, B45198P Date: July 2006

© KEMET 2006. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without KEMET's prior express consent is prohibited.

B45196P, B45198P

·Com.cn

Performance, High Reliability 150 °C

Construction

- Polar tantalum capacitors with solid electrolyte
- Conventional TaMnO₂ technology
- Flame-retardant plastic case (UL 94 V-0)
- Optionally tinned or gold-plated terminals

Features

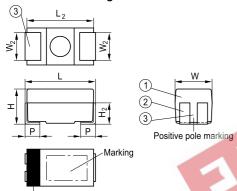
- Operating temperature up to 150 °C
- Outstanding reliability
- Very low failure rate
- Qualification in compliance with AEC-Q200
- High volumetric efficiency
- Excellent solderability
- Stable temperature and frequency characteristics
- Low leakage current, low dissipation factor
- Low self-inductance
- High resistance to shock and vibration
- Suitable for use without series resistor (special operating conditions recommended)
- Lead-free and material content compatible with ELV and RoHS

Applications

- Automotive electronics (safety applications e.g. airbag, ABS or motor management)
- Measuring and control engineering
- Medical engineering
- DC/DC converters
- Telecommunications (e.g. mobile phones, infrastructure)
- Data processing (e.g. laptops, mainframes)

Soldering

Suitable for reflow soldering (IR and vapor phase, in compliance with JEDEC J-STD-020 C) and wave soldering


Delivery mode

Taped and reeled in accordance with IEC 60286-3

Performance, High Reliability 150 °C

Dimensional drawing

Positive pole marking

① Encapsulation: molded epoxy resin

② NiFe; tinned surface Sn100 or gold-plated

③ Reduced slot length for case size A

Dimensions

Case size		Dimensions in mm (inches)								
KEMET	EIA/IECQ	L	W	Н		L_2 typ. W_2	H ₂ typ. P±0.3			
						±(.004)		±(.012)		
A	3216-18	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2	3.2	1.2	1.3	0.8		
		(.126	(.063	(.063	(.126)	(.047)	(.051)	(.031)		
		±0.008)	±0.008)	±0.008)						
В	3528-21	3.5 ±0.2	2.8 ±0.2	1.9 ±0.2	3.5	2.2	1.4	0.7		
		(.138	(.110	(.075	(.138)	(.087)	(.055)	(.027)		
		±0.008)	±0.008)	±0.008)						
С	6032-28	6.0 ±0.3	3.2 ±0.3	2.5 ± 0.3	6.1	2.2	1.8	1.3		
		(.236	(.126	(.098	(.240)	(.087)	(.071)	(.051)		
		±0.012)	±0.012)	±0.012)						
D	7343-31	7.3 ±0.3	4.3 ±0.3	2.8 ±0.3	7.3	2.4	1.8	1.3		
		(.287	(.169	(.110	(.287)	(.094)	(.071)	(.051)		
		±0.012)	±0.012)	±0.012)						
E	7343-44	7.3 ±0.3	4.3 ±0.3	4.1 ±0.3	7.3	2.4	1.8	1.3		
		(.287	(.169	(.161	(.287)	(.094)	(.071)	(.051)		
		±0.012)	±0.012)	±0.012)						

B45196P, B45198P

透透透透透

B45196P, B45198P Tantalum chip capacitors Performance, High Reliability 150 °C Rated voltage, (not coded) $V_R = 6.3 V$ is abbreviated as 6. Internal code for production 2 to 2Marking Case size A Case size B Rated voltage Positive Capacitance (in coded form) pole (bar) (in coded form) Capacitance (in coded form) Internal code R Internal code for production (2 to 3 figures) V for production **T**T (2 to 3 figures) Positive Manufacturer's Date code Manufacturer's Date code pole (bar) logo logo Case sizes C, D, E Positive Manufacturer's pole (bar) logo Internal code for production equipment (2 to 3 figures) K Date code ١, Rated voltage, (not Capacitance coded) $V_R = 6.3 V$ is abbreviated as 6. (in coded form) Voltage coding for case size A 10 16 25 Rated voltage 20 35 4 6.3 50 Code letter G J А С D Е ٧ Т

Capacitance coding

1st and 2nd digit	Capacitance in pF				
3rd digit	Multiplier:	6 = 10 ⁶ pF 7 = 10 ⁷ pF 8 = 10 ⁸ pF			

Date coding

Year	Month					
T = 2005	2 = February	8 = August				
U = 2006	3 = March	9 = September				
V = 2007	4 = April	O = October				
W = 2008	5 = May	N = November				
X = 2009	6 = June	D = December				

B45196P, B45198P

Performance, High Reliability 150 °C

Specifications and character	istics in brief					8-
Series			Performance,	High	1 32 B	
			Reliability 150	0°C		20
Ordering code			B45198P	B45196P		
Technology			Ta-MnO ₂	Ta-MnO ₂	- 1	
Terminals			Gold-plated	Tinned	0.	
Rated voltage	(up to 85 °C)	V_{R}	6.3 50		VDC	
	(up to 125 °C)		4.0 33			
	(up to 150 °C)		3.2 25			
Rated capacitance	(20 °C, 120 Hz)	C _R	0.47 150		μF	
Capacitance tolerance			±20%, ±10%			
Maximum impedance	(20 °C, 100 kHz)	Z _{max}	0.5 28		Ω	
Operating temperature range		T _{op}	-55 +150		°C	
Failure rate	(at 40 °C; ≤ V _R ,				fit	
$(1 \text{ fit} = 1 \cdot 10^{-9} \text{ failures/h})$	$R_s \ge 3 \Omega/V$					
$C_{R}\cdotV_{R}{\leq}330\;\mu\text{F}\cdotV$			≤0.8			
$C_R \cdot V_R > 330 \ \mu F \cdot V$			≤2.5			
Service life			>500000		h	
Leakage current	(V _R , 5 min, 20 °C)	\mathbf{I}_{leak}	10		nA/μC	
Detail specification			CECC 30801	-801/-802		
Climatic category	(−55 °C/+125 °C/56		55/125/56			
(to IEC 60068-1)	days damp heat					
	test)					

Maximum working voltage at 150 $^\circ\text{C}:$ 0.5 $V_\text{R}.$

Details for this operating condition must be agreed upon between supplier and customer.

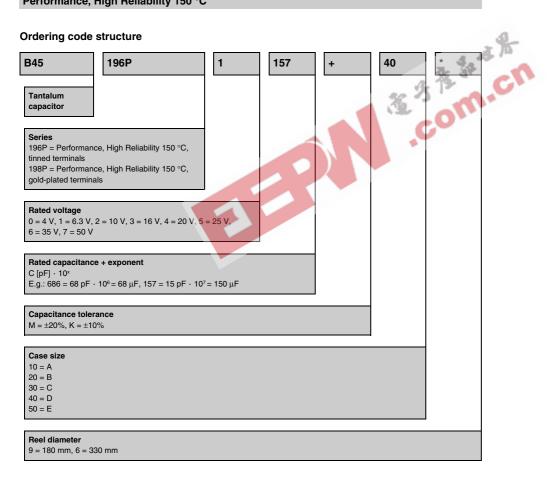
For high performance types, individual tests are carried out under more extreme conditions, supplementary to the tests specified by CECC.

All types are qualified in compliance with AEC-Q200.

B45196P, B45198P

Performance, High Reliability 150 °C

Overview of types


Overview of t	ypes																- 8-	
(VDC) (up to 85 °C)		4	6	6.3		10		16	:	20	2	25	3	35		50	-Ch	
C _R (μF)													- 42	2	6 13			
0.1												4	1	4		A		
0.15													ŀ	A 🕻	E			
0.22													A	4 🔷	E	3		
0.33													ŀ	4	E	3		
0.47												Ą	А	В	(2		
0.68										A		٩	E	3	(2		
1								A		A		٩	E	3	0	0	•	
1.5						A		A		A	E	3	()	[D		
2.2			ļ	٩		A		A		В	E	3	()	[D	•	
3.3	/	4	1	4		A	А	В		В	(2	В	С	[D		
4.7		4	Å	A	А	В	А	В	В	С	(2	С	D	[C		
6.8		4	Α	В	А	В	Α	вС	(C	С	D	0)	D	Е		
10	А	В	А	В	В	С	В	С	(С	С	D	0)	E	Ξ		
15	А	В	В	С	В	С	(С	С	D	[)	D	Е				
22	В	С	В	С		С	С	D		D	[)	D	Е				
33	В	С	(5	в	C D	С	D		D			E	=				
47	(5	С	D	С	D	С	D					E					
68	С	D	С	D	С	D		D										
100	[5	[)		D												
150	[C	[)		E												
220						E												
											•		۱ <u> </u>					

Upon request

B45196P, B45198P

Performance, High Reliability 150 °C

Tantalum chip capacitors Performance, High Reliability 150 °C

B45196P, B45198P

Technical data and ordering codes

Technical data	and ordering c	odes			Ordering code
C _R	Case size	DF _{max}	I _{leak,max}	Z _{max}	Ordering code
(20 °C, 120 Hz)		(20 °C, 120 Hz)		(20 °C,	3 St - 1
		,	5 min)	100 kHz)	3.72 6
μF		%	μA	Ω	
V _{R,85} = 4 VDC, V	_{R,125} = 2.5 VDC,	V _{R,150} = 2 VDC			
3.3	А	4.5	0.5	5. 9	B45196P0335+10*
4.7	А	4.5	0.5	4.6	B45196P0475+10*
6.8	А	4.5	0.5	3.9	B45196P0685+10*
10	А	4.5	0.5	2.9	B45196P0106+10*
10	В	4.5	0.5	2.7	B45196P0106+20*
15	А	4.5	0.6	2.7	B45196P0156+10*
15	В	4.5	0.6	2.6	B45196P0156+20*
22	В	4.5	0.9	1.8	B45196P0226+20*
22	С	4.5	0.9	1.7	B45196P0226+30*
33	В	4.5	1.3	1.5	B45196P0336+20*
33	С	4.5	1.3	1.5	B45196P0336+30*
47	С	4.5	1.9	1.1	B45196P0476+30*
68	С	4.5	2.7	0.9	B45196P0686+30*
68	D	4.5	2.7	0.8	B45196P0686+40*
100	D	6	4.0	0.6	B45196P0107+40*
150	D	6	6.0	0.6	B45196P0157+40*
V _{R,85} = 6.3 VDC,	$V_{R,125} = 4 \text{ VDC},$	V _{R,150} = 3.2 VDC			
2.2	А	4.5	0.5	6.5	B45196P1225+10*
3.3	А	4.5	0.5	4.6	B45196P1335+10*
4.7	А	4.5	0.5	3.6	B45196P1475+10*
6.8	А	4.5	0.5	2.9	B45196P1685+10*
6.8	В	4.5	0.5	2.7	B45196P1685+20*
10	А	4.5	0.6	2.7	B45196P1106+10*
10	В	4.5	0.6	2.1	B45196P1106+20*
15	В	4.5	0.9	1.8	B45196P1156+20*
15	С	4.5	1.0	1.7	B45196P1156+30*
22	В	4.5	1.4	1.5	B45196P1226+20*
22	С	4.5	1.4	1.3	B45196P1226+30*
33	С	4.5	2.1	1.1	B45196P1336+30*
47	С	4.5	3.0	0.8	B45196P1476+30*
47	D	4.5	3.0	0.8	B45196P1476+40*
68	С	4.5	4.3	0.8	B45196P1686+30*

Preliminary Data

* = Code number for reel diameter

6 = 330-mm reel

9 = 180-mm reel

+ = Capacitance tolerance M = ±20%

K = ±10%

B45196P, B45198P

Performance, High Reliability 150 °C

					.9
C _R	Case size	DF _{max}	I _{leak,max}	Z _{max}	Ordering code
(20 °C, 120 Hz)		(20 °C, 120 Hz)	(20 °C, V _R ,	(20 °C,	4,35
			5 min)	100 kHz)	
μF		%	μA	Ω	Ordering code B45196P1686+40*
68	D	4.5	4.3	0.6	B45196P1686+40*
100	D	6	6.3	0.6	B45196P1107+40*
150	D	6	9.5	0.5	B45196P1157+40*
V _{R,85} = 10 VDC, 1	V _{R,125} = 6.3 VDC	$V_{R,150} = 5 \text{ VDC}$			
1.5	А	4.5	0.5	6.5	B45196P2155+10*
2.2	А	4.5	0.5	4.6	B45196P2225+10*
3.3	А	4.5	0.5	3.6	B45196P2335+10*
4.7	А	4.5	0.5	2.9	B45196P2475+10*
4.7	В	4.5	0.5	2.7	B45196P2475+20*
6.8	А	4.5	0.7	2.7	B45196P2685+10*
6.8	В	4.5	0.7	2.1	B45196P2685+20*
10	В	4.5	1.0	1.8	B45196P2106+20*
10	С	4.5	1.0	1.7	B45196P2106+30*
15	В	4.5	1.5	1.5	B45196P2156+20*
15	С	4.5	1.5	1.4	B45196P2156+30*
22	С	4.5	2.2	1.1	B45196P2226+30*
33	В	4.5	3.3	1.2	B45196P2336+20*
33	С	4.5	3.3	0.9	B45196P2336+30*
33	D	4.5	3.3	0.8	B45196P2336+40*
47	С	4.5	4.7	0.8	B45196P2476+30*
47	D	4.5	4.7	0.6	B45196P2476+40*
68	С	4.5	6.8	0.8	B45196P2686+30* •
68	D	4.5	6.8	0.6	B45196P2686+40*
100	D	6	10.0	0.6	B45196P2107+40*
150	E	6	15.0	0.5	B45196P2157+50*
220	E	9	22.0	0.5	B45196P2227+50*
V _{R,85} = 16 VDC, 7	V _{R,125} = 10 VDC,	, V _{R,150} = 8 VDC			
1	А	3	0.5	6.5	B45196P3105+10*
1.5	А	4.5	0.5	5.2	B45196P3155+10*
2.2	А	4.5	0.5	4.3	B45196P3225+10*
3.3	А	4.5	0.6	3.4	B45196P3335+10*
3.3	В	4.5	0.6	3.0	B45196P3335+20*
4.7	А	4.5	0.8	3.0	B45196P3475+10*
4.7	В	4.5	0.8	2.1	B45196P3475+20*

Preliminary Data

* = Code number for reel diameter

6 = 330-mm reel

9 = 180-mm reel

Page 9 of 15

+ = Capacitance tolerance

M = ±20%

K = ±10%

B45196P, B45198P

Performance, High Reliability 150 °C

	n	r	n	n	a.
C _R	Case size	DF _{max}	I _{leak,max}	Z _{max}	Ordering code
(20 °C, 120 Hz)		(20 °C, 120 Hz)	(20 °C, V _R ,	(20 °C,	4.4
			5 min)	100 kHz)	A av
μF		%	μA	Ω	Ordering code B45196P3685+10*
6.8	A	4.5	1.1	2.0	B45196P3685+10*
6.8	В	4.5	1.1	1.8	B45196P3685+20*
6.8	С	4.5	1.1	1.7	B45196P3685+30*
10	В	4.5	1.6	3.0	B45196P3106+20*
10	С	4.5	1.6	1.4	B45196P3106+30*
15	С	4.5	2.4	1.1	B45196P3156+30*
22	С	4.5	3.6	1.0	B45196P3226+30*
22	D	4.5	3.6	0.8	B45196P3226+40*
33	С	4.5	5.3	0.9	B45196P3336+30*
33	D	4.5	5.3	0.7	B45196P3336+40*
47	С	4.5	7.5	0.8	B45196P3476+30* ●
47	D	4.5	7.5	0.6	B45196P3476+40*
68	D	4.5	10.9	0.6	B45196P3686+40*
V _{R,85} = 20 VDC, V	V _{R,125} = 13 VDC,	, V _{R,150} = 10 VDC			
0.68	А	3	0.5	7.8	B45196P4684+10*
1	А	3	0.5	5.9	B45196P4105+10*
1.5	А	4.5	0.5	5.2	B45196P4155+10*
2.2	В	4.5	0.5	3.6	B45196P4225+20*
3.3	В	4.5	0.7	2.7	B45196P4335+20*
4.7	В	4.5	1.0	1.9	B45196P4475+20*
4.7	С	4.5	1.0	1.7	B45196P4475+30*
6.8	С	4.5	1.4	1.3	B45196P4685+30*
10	С	4.5	2.0	1.1	B45196P4106+30*
15	С	4.5	3.0	1.0	B45196P4156+30*
15	D	4.5	3.0	0.9	B45196P4156+40*
22	D	4.5	4.4	0.7	B45196P4226+40*
33	D	4.5	6.6	0.6	B45196P4336+40*
V _{R,85} = 25 VDC, V	V _{R,125} = 16 VDC,	V _{R,150} = 12.5 VD	С		
0.47	A	3	0.5	8.5	B45196P5474+10*
0.68	А	3	0.5	6.5	B45196P5684+10*
1	А	3	0.5	5.2	B45196P5105+10*
1.5	В	4.5	0.5	4.2	B45196P5155+20*
2.2	В	4.5	0.6	3.0	B45196P5225+20*
3.3	С	4.5	0.9	2.0	B45196P5335+30*

Preliminary Data

* = Code number for reel diameter

6 = 330-mm reel

9 = 180-mm reel

+ = Capacitance tolerance

M = ±20% K = ±10%

B45196P, B45198P

Performance, High Reliability 150 °C

<u> </u>	Case size	DF _{max}	1	7	Ordering code
C _R (20 °C, 120 Hz)	Case size	(20 °C, 120 Hz)		Z _{max}	Ordering code
(20 °C, 120 HZ)		(20 °C, 120 HZ)		(20 °C,	7. 14
		0/	5 min)	100 kHz)	Ordering code B45196P5475+30*
<u>μF</u>	0	%	μA	Ω	
4.7	С	4.5	1.2	1.6	B45196P5475+30*
6.8	С	4.5	1.7	1.4	B45196P5685+30*
6.8	D	4.5	1.7	1.1	B45196P5685+40*
10	С	4.5	2.5	1.1	B45196P5106+30*
10	D	4.5	2.5	0.9	B45196P5106+40*
15	D	4.5	3.8	0.7	B45196P5156+40*
22	D	4.5	5.5	0.6	B45196P5226+40*
V _{R,85} = 35 VDC,	V _{R,125} = 23 VDC	, $V_{R,150} = 17.5 \text{ VD}$	C		
0.1	А	3	0.5	28.0	B45196P6104+10*
0.15	А	3	0.5	23.0	B45196P6154+10*
0.22	А	3	0.5	15.0	B45196P6224+10*
0.33	А	3	0.5	11.0	B45196P6334+10*
0.47	Α	3	0.5	10.0	B45196P6474+10*
0.47	В	3	0.5	8.0	B45196P6474+20*
0.68	В	3	0.5	5.5	B45196P6684+20*
1	В	3	0.5	4.4	B45196P6105+20*
1.5	С	4.5	0.6	3.3	B45196P6155+30*
2.2	С	4.5	0.8	2.2	B45196P6225+30*
3.3	В	3	1.2	2.5	B45196P6335+20* ●
3.3	С	4.5	1.2	1.7	B45196P6335+30*
4.7	С	4.5	1.7	1.3	B45196P6475+30*
4.7	D	4.5	1.7	1.0	B45196P6475+40*
6.8	D	4.5	2.4	0.9	B45196P6685+40*
10	D	4.5	3.5	0.7	B45196P6106+40*
15	D	6	5.3	0.7	B45196P6156+40*
15	Е	4.5	5.3	0.5	B45196P6156+50*
22	D	6	7.7	0.7	B45196P6226+40* ●
22	E	4.5	7.7	0.5	B45196P6226+50*
33	E	6	11.6	0.5	B45196P6336+50* ●
47	E	6	16.5	0.5	B45196P6476+50* ●
V _{R,85} = 50 VDC,	V _{R,125} = 33 VDC	, V _{R,150} = 25 VDC			1
0.1	A	3	0.5	27.0	B45196P7104+10*
0.15	В	3	0.5	22.0	B45196P7154+20*
0.22	В	3	0.5	15.0	B45196P7224+20*

Preliminary Data

* = Code number for reel diameter

6 = 330-mm reel

9 = 180-mm reel

+ = Capacitance tolerance M = $\pm 20\%$ K = $\pm 10\%$

Please read Important notes and Cautions and warnings at the end of this document.

Page 11 of 15

Performance, High Reliability 150 °C

B45196P7334+20* B45196P7474+30* B45196P7684-345196P C_{R} $\mathsf{DF}_{\mathsf{max}}$ Z_{max} Case size I_{leak,max} (20 °C, V_R, (20 °C, 120 Hz) (20 °C, 120 Hz) (20 °C, 5 min) 100 kHz) μF % μA Ω 0.33 В 3 11.0 0.5 0.47 С 3 0.5 6.5 0.68 С 3 0.5 5.5 С 3 0.5 3.3 1 1.5 D 4.5 0.8 2.8 B45196P7155+40* D 4.5 B45196P7225+40* 2.2 1.1 2.0 D 4.5 3.3 1.1 B45196P7335+40* 1.7 4.7 D 4.5 2.4 0.9 B45196P7475+40* 6.8 D 6 3.4 0.7 B45196P7685+40* 6.8 Е 4.5 3.4 0.5 B45196P7685+50* 5.0 Е 4.5 0.5 B45196P7106+50* 10

B45196P, B45198P

Preliminary Data

* = Code number for reel diameter

6 = 330-mm reel

9 = 180-mm reel

+ = Capacitance tolerance

M = ±20% K = ±10%

Performance, High Reliability 150 °C

B45196P, B45198F

Cautions and warnings

When using tantalum capacitors with a manganese dioxide coating, the following cautions and warnings should be taken into account:

Polarity
Because tantalum capacitors are *polar capacitors*, it is important to observe their polarity
markings (positive pole on the anode, negative pole on the cathode). Any incorrect polarity
resulting from the sum of the AC and DC voltage components must be smaller theorem. resulting from the sum of the AC and DC voltage components must be smaller than or equal to the permitted polarity reversal voltage. To avoid reducing their reliability, this voltage may only occur for a short time, at most five times for a duration of one minute per hour.

Voltage

The maximum continuous voltage depends on the ambient temperature. Within the temperature range of -55 to +85 °C, the rated voltage is equal to the maximum continuous voltage. Between + 85 and + 125 °C the maximum continuous voltage must be reduced linearly from the full rated voltage to 2/3 of it (derating). At 150 °C (only B4519*P series) the voltage must be reduced to 1/2 and at 175 °C (only B4519*T series) to 1/3 of the rated voltage. Operation below the maximum continuous voltage has a positive effect on the capacitor's failure rate. The maximum continuous voltage must not be exceeded.

All unfavourable operating conditions (such as possible line overvoltages, unfavourable tolerances of the transformation ratio of the line transformer in the equipment, repeated overvoltages when the equipment is switched on, high ambient temperatures) must be taken into account when determining the operating voltage.

The surge voltage is the maximum voltage (peak value) that may be applied to the capacitor for short periods, at most five times for a total duration of up to 1 minute per hour. The surge voltage must not be applied for periodic charging and discharging in the course of normal operation and cannot be part of the operating voltage. The permissible surge voltage for all capacitors in this data book is 1.3 x the rated voltage. The occurrence of voltage impulses (transient voltages) that exceed the surge voltage may lead to irreparable damage.

Capacitance

The actual capacitance of a capacitor can deviate from the rated capacitance by as much as the full magnitude of the tolerance at delivery. The capacitance varies with the temperature (at +125 °C +12% up to +20%) and decreases with increasing frequency.

Tantalum chip capacitors Performance, High Reliability 150 °C

B45196P, B45198P

Low-resistance applications and voltage networks

For *low-resistance applications*, KEMET recommends a maximum operating voltage of half the permissible maximum continuous voltage, so that the capacitors have sufficient tolerance to withstand voltage peaks. Depending on the conditions of use, the early failure rate is higher here by a factor of 2 to 20 than in the range with a constant failure rate as specified in the data book.

When operated directly in a *voltage network*, the capacitor should be protected against overvoltage, e.g. by a suppressor diode, and against polarity reversal by a diode. If a capacitor is operated in an unprotected low-impedance circuit and fails because the permissible conditions for the forward DC voltage, reverse DC voltage, surge current, power dissipation or temperature are exceeded, the continued current flow through the overstressed capacitor may produce overheating. The overheated capacitor may damage the surrounding components and the circuit board.

Storage conditions

Capacitors with solid electrolyte may be stored at temperatures down to -80 °C. The upper *storage temperature* must not exceed +85 °C (for blister tape the temperature limit is +40 °C). The storage conditions should not exceed +40 °C and 70% R. H. A drypack is useful to prevent the effects of humidity.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, KEMET is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a KEMET product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as "hazardous"). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.

We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available.

6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).